
A Conservative Theory for Long Term Reliability Growth Prediction

P.G. Bishop R.E. Bloomfield
Adelard Adelard

London E3 2DA London E3 2DA
UK UK

Abstract

This paper describes a different approach to
reliability growth modelling which should enable
conservative long term predictions to be made. Using
relatively standard assumptions it is shown that the
expected value of the failure rate after a usage time t is
bounded by:

λ t ≤ N

et
where N is the initial number of faults and e is the
exponential constant. This is conservative since it places
a worst case bound on the reliability rather than making
a best estimate. We also show that the predictions might
be relatively insensitive to assumption violations over
the longer term. The theory offers the potential for
making long term software reliability growth predictions
based solely on prior estimates of the number of residual
faults. The predicted bound appears to agree with a wide
range of industrial and experimental reliability data.

It is shown that less pessimistic results can be
obtained if additional assumptions are made about the
failure rate distribution of faults.

1 Introduction

A large number of reliability growth models have
been developed over the years (e.g. [1], [4], [6], [7], [9],
[12]). These models employ a number of different
strategies which attempt to extrapolate future reliability
from the observed failures. The approaches tend to work
over the short term but lack predictive power over the
long term (i.e. for usage times which are orders of
magnitude greater than the current usage time). This
paper describes a new approach to reliability growth
modelling which could enable conservative long term
predictions to made with quite limited initial data. The
following sections will describe the underlying concepts
and assumptions, the basic theory, and some empirical
evaluations of the theory applied to available reliability
growth data.

2 Underlying concepts

The observed reliability of a system containing design
faults is based on three main factors:

• the number of faults
• the size and location of faults
• the input distribution (operational profile)
This is illustrated in the following diagram.

of Input
Values (I)

Defect
Distribution Perceived

Defect
Failure Rates

λ1

λ2

λ3

D1

D 2

D3

Figure 1 Illustration of the software failure process

A failure occurs when an input value is selected
which activates a fault. The perceived defect failure rate
λi should depend on the probability/unit time, P(j), of
activating points in input space Di covered by defect i,
i.e.:

λ i
j D

P j

i

=
∈
∑ ()

Under a stable input distribution with no fault correction,
λ1 .. λΝ should be stable but the number of faults and
their failure rates are unknown. While there are several
methods for estimating the likely number of faults, at
first sight there seems no way to establish the defect
failure rates. But in fact we can use additional knowledge
about the usage time of the software to place a bound on
the failure rate contributions of the faults. This is the
basis of the theory developed below.

2.1 Basis of the new model

The new model makes the relatively standard
reliability modelling assumptions that:

1. removing a fault does not affect the failure rates of
the remaining faults

2. the failure rates of the faults can be represented by
λ1, λ2 .. λΝ, which do not change with time (i.e. the
input distribution is stable)

3. any fault exhibiting a failure will be detected and
corrected immediately

Note that assumption 2 implies that failures conform to
the standard exponential arrival time model.

The basic idea behind the model is very simple; once
the software has been operating for some time, faults
with the highest failure rates will be removed, while
faults with low failure rates only make a small
contribution to the residual software failure rate. Thus for
any time t there is an optimal defect failure rate which
maximizes the residual software failure rate.

Put more formally, using the assumptions given
above, a fault i with a perceived failure rate λι can
survive a usage time t with a probability of:

e i t−λ

A defect can only contribute to the future unreliability
of the program if it survives, so the average failure
intensity of the program due to defect i after time t will
be:

λ λ λ
i i

tt e i| = −

Differentiating with respect to λ i , the maximum value

of λi t| occurs when e t ei it
i

t− −− =λ λλ 0

i.e. when λ i t
 = 1

Substituting back, it follows that the maximum failure
rate contribution of any fault after the software has
operated for a time t is:

λ i t
e

t
| ≤

−

1
(1)

This result is independent of the actual failure rate of the
fault. The failure-rate independence of the bound is
illustrated in the figure below.

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

Time

Residual
Failure

Rate

0.1

0.01

0.001

1/et

Figure 2 Failure rate independence of the bound

It is clear that, regardless of the defect failure rate, the
residual contribution after time t is bounded by 1/et.

By summing the bounds for all N faults, we obtain a
residual failure rate bound for the program of:

λ t
N

et
≤ (2)

where λ λt i t= Σ | . This is a surprising result because it

permits long term predictions to be made about a system
without extrapolating from the observed failures. If the
model assumptions are valid and we can estimate the
number of faults at the time of release (e.g. using
estimation methods such as [5] or [11]), the reliability
growth can be bounded at any time in the future. Note
that it does not tell us when (or even if) the faults will be
found, but it does set a quantitative bound on the residual
failure rate of the program and this bound always
decreases with increasing test or operating time. The
disadvantage of this simple bounding model is that it can
be overly pessimistic. As the subsequent analyses will
show, realistic failure rate distributions could exhibit
significantly better growth than the worst-case bound.

3 Modelling defect failure rates

In a more general model, we need to consider the
likely failure rates of the faults under a given input
distribution I. We represent this by a fault density
function σ(Ι,λ) where σ(Ι,λ)δλ gives the number of faults
that exist with failure rates in the range λ λ δλ .. + .
Using this density function, the expected number of
faults surviving after time t will be:

σ λ λλ(,)I e dt−∞
∫0

(3)

and the expected value of the failure rate of the overall
program after usage time t is simply:

λ σ λ λ λλ
t

tI e d= −∞
∫ (,)

0
(4)

The main advantage of this reformulation is that we
can introduce additional constraints on the fault density
function based on external knowledge. If these
constraints are valid, worst case bounds can be set on the
future reliability of the software.

As discussed earlier, one particular piece of
additional knowledge we can incorporate is an
independent estimate of the total number of faults within
the software, $N . Knowing this number places a
constraint on the initial fault density function, σ(I,λ) , i.e.

$ (,)N I d≈
∞

∫ σ λ λ
0

While this fixes the integrated value σ(Ι,λ), the actual
shape is unknown, but this relatively weak constraint still
allows us to establish worst case bounds on reliability
growth. The following analyses examine both discrete

and continuous fault density functions. Both analyses
confirm that equation (2) represents the worst case
bound, but they also show that the actual bounds can be
significantly better than this if we impose additional
constraints on the overall shape of the fault density
function.

4 Analysis for discrete failure rates

For any given program and input distribution, each
fault will have a single specific failure rate. So the fault
density mass is located at discrete points on the failure
rate axis, as illustrated below.

Fault Density
Function(σ)

Failure Rate(λ) .

 Figure 3 Density function for a discrete set of faults

To simplify the analysis we first define an “effort
factor” Mt which normalises the achieved failure rate λt
with respect to the operating time t, i.e.

M tt t= λ (5)

or put another way, the residual failure rate is Mt times
greater than 1/t. This dimensionless effort factor is
almost identical to the “heroic debug” factor (ti /mttfi)
discussed by Littlewood and Strigini [10], i.e. it is a
multiplying factor which relates the testing time t to the
achieved MTTF.

Since the failure rates of individual faults can be
added to obtain the overall failure rate, it follows that the
effort factors for individual faults can also be added, i.e.

M Mt ti
i N

=
=
∑
1,

(6)

where Mt i is the effort factor for a single fault, i.e.

M t t et
t

i t
i

i i= = −λ λ λ

Since the “effort factors” for the individual faults are
additive, the following analysis only considers the
variation in the effort factor for a single fault.

The time t for which the effort factor (Mt i) is a
maximum occurs when dM/dt = 0, i.e. when:

λ λ
λ λ

i
t

i
t

e t ei i
− −

− =2 0

hence: t
i

= 1

λ

Substituting back into Mt i we obtain a maximum
value for Mt i of:

max M
eti = 1

(7)

This can be illustrated in the following figure which
shows the variation of Mt i against t normalised so that
time is expressed in units of 1/λi.

0
0 1 2 3 4 5

Time t in units of 1/λi

Effort factor
M

1
e

Figure 4 Variation in effort factor for a single fault

This shows that the relative cost of testing to achieve
a given MTTF is greatest when t=1/λi. This is because,
even prior to testing, the software is likely to have a finite
failure rate. Small amounts of testing are unlikely to
reveal the fault so there is little reduction in residual
failure rate for the time spent. Since the residual failure
rate, λ it , is virtually constant, the effort factor initially

rises almost linearly with time. It is only when t i≥ 1 / λ
that the exponentially decreasing survival probability
becomes dominant.

From equation (6) the effort factor for N faults is the
sum of the individual effort factors. This is illustrated in
the following diagram.

Time (arbitrary units)

Effort
Factor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 1 10 100 1000

Overall Effort Factor

1
e

Single fault
Mt

 Figure 5 Variation in effort factor for multiple faults

We know from (7) that for any single fault, the effort
factor is bounded by 1/e, so we know that for N faults the
effort factor is bounded by:

M
N

et ≤ (8)

In fact this effort factor bound can only be reached if
all N faults have an identical failure rate, i.e. the fault
density function σ(Ι,λ) is a single “spike” (so the
individual effort factor terms peak at the same time t).
Any other density function will have a maximum effort
factor which is less than N/e.

Hence from the definition of Mt it follows that:

λ t
N

e t
≤ .

1
(9)

This confirms the result in equation (2), but it can
seen from Figure 4 that if the faults are widely spaced
over the failure rate range, only one or two faults make a
significant contribution to the effort factor at any given
time, so the actual reliability growth could be much
better than the worst case bound given by equation (2).

Conversely, if we take an extreme case where the
software contains an infinite number of infinitely small
faults, the failure rate remains unaltered by testing and
correction, and consequently the effort factor would
always increase with testing time. A continually rising
effort factor has been observed empirically [10], but the
above analysis shows that for any finite number of faults,
the effort factor should be bounded by N/e and could even
decrease in the long term.

The variation in growth rate for different fault density
functions is considered in more detail in the following
section where we examine a continuous fault density
function based on the gamma distribution.

5 Worst case bounds for a continuous fault
density function

As an alternative to a discrete density function, a
continuous fault density function can be used to model
the expected number of faults existing over the failure
rate spectrum. One equation that can be used to represent
the spread of defect failure rates is the gamma
distribution. The gamma distribution is defined as:

1 1

Γ()
. . /

α β
λα

α λ β− −e (10)

where Γ(α) is the gamma function which has the
property that Γ(α+1)=αΓ(α).

The gamma distribution was chosen because it is
quite flexible; the same family can approximate to a
number of distributions, e.g.:

α α β λ λ

α α β λ
α α β λ

λ β

→ ∝

= ∝
→ ∞ ∝

−

−

0

1

1, (, ,)

, (, ,)

, (, ,)

 (reciprocal)

 (exponential)

 (spike)

gamma

gamma e

gamma gaussian

This is illustrated in Figure 6.

0
20
40
60
80

100
120
140
160

180
200

0 10 20 30 40

alpha=10 (‘spike’)

alpha=1 (exponential)

alpha=0.1 (reciprocal)

Prob.
(arbitrary

units)

λ

 Figure 6 Examples of gamma distributed failure rates

The fault density function has to take into account the
overall number of faults, N, hence:

σ λ
α β

λα
α λ β(,)

()
. . /I N e= − −1 1

Γ
(11)

Substituting this fault density function into equation
(3), it can be shown that:

λ α β
β αt

N

t
=

+ +()1 1 (12)

We can relate the reliability improvement to the
usage time using the “effort factor” Mt defined in
equation (5) where:

M N
t

t
t =

+ +
αβ

β α()1 1
(13)

We can now examine the effects of some of the
extreme cases of the fault density function σ on the effort
factor.

When α → 0 the fault density function approximates
to the reciprocal function (σ ∝ λ-1). For any finite failure
rate it follows that β → ∞, so equation (13) approximates
to:

M Nt ≅ α
This implies there will be a fixed ratio between the

test time and the MTTF (regardless of the test time). This
corresponds to the case discussed in the previous section
where the effort factor peaks are evenly spaced on a
logarithmic time axis (Figure 4) so that only a few faults
contribute to the effort factor at any given time.

An exponential fault density function (α=1) gives:

M
N t

t
t =

+
β

β
.

()1 2

Since the reliability does not change very much
initially, the effort factor increases linearly for small t.
This is consistent with observations of “heroic debug”.
However when t>1/β the effort factor is proportional to
1/t and so drops towards zero. This effect is even more

pronounced for larger values of α where the density
function is more “spiky”. These variations in reliability
growth “effort” are illustrated in the figure below.

0

5

10

15

20

25

30

35

40

0.001 0.01 0.1 1 10 100 1000

Time t

Effort
Factor
(Mt)

α = 30

α = 1

α = 0.03

(spike)

(exponential)

(reciprocal)

 Figure 7 Examples of variation in effort factor (100 faults)

We can derive a worst case bound on the effort factor
for a gamma density function. The maximum value of Mt

occurs when
d

d

M

t
t = 0 .

So by differentiating equation (13), it can be shown that
the maximum value of Mt occurs when:

t = 1

αβ
(14)

Substituting in equation (13) we can show that:

max M Nt =
+

+α
α

α

1

1

(15)

There is a standard result that

1+

 →x

n
e

n
x

as n → ∞ .

Using this result it can be readily shown that

α
α

α

+

 →

+

1

11

e
 as α → ∞ ,

Hence max M
N

et → (α → ∞)

Using equation (15), max Mt for some key fault
density shapes are summarised in the table below.

Shape Parameter max Mt
α → 0 (reciprocal) Nα
α = 1 (exponential) N 4
α → ∞ (spike) N e

 Table 1 Maximum effort factor vs. fault density shape

The variation of max Mt over the whole range of α
(for N=1) is shown in the graph below.

α

Max(M)

0.001

0.01

0.1

1.0

0.001 0.01 0.1 1 10 100 1000 10000

M
1/e
alpha

1/e

t t

Shape Parameter

 Figure 8 Variation of maximum effort factor with shape
parameter (N=1)

So we can assert that the effort factor Mt is bounded
by:

M
N

et ≤ (16)

As Mt is equivalent to λ tt , it follows that:

λ t
N

e t
≤ .

1
(17)

This upper bound on the failure rate would apply
regardless of the actual parameters of the gamma
distribution. The bound is identical to the general result
for N faults with discrete failure rates derived earlier.
This is not surprising as the limiting case is the same—a
“spike”.

The best case reliability growth occurs for the
reciprocal density function when the failure rate tends to
αΝ/t for all t. This expression is hard to interpret directly
but if we consider an explicit reciprocal density function,
the meaning becomes more obvious. If the density
function is:

σ λ
λ

(,)I
k=

it can be shown that the number of faults in the interval
λ0 to eλ0 is k and the “effort factor” remains at a constant
value of k for all t. It can also be shown that there will be
2.3k faults (loge10 k) for a tenfold change in failure rate.

From the gamma distribution analysis, the equivalent
effort factor is αN. So the interpretation is that the
gamma model approximates to a truncated reciprocal
function where the N faults are spread over 1/2.3α
decades of failure rate.

It is this spread of failure rates that determines the
level of pessimism in the worst case bound. If the faults
are reciprocally spread across R orders of magnitude in
failure rate, the “best case” effort factor can be shown to
be N/2.3R (assuming the truncation effects are
negligible). By contrast the “spike” assumption yields an
effort factor of N/e. So the ratio of the worst case bound

and the “best case” reliability is at most 2.3R/e. For
example, if the faults spanned 5 orders of magnitude in
failure rate, the worst case bound prediction and the best
case reliability would differ by a factor of 4.2. So for most
realistic software systems the worst-case bound would be
pessimistic by less than an order of magnitude.

6 Sensitivity to the model assumptions

The assumptions inherent in this analysis are most
likely to apply to simple, mass-produced software items
where diagnosis and correction are easy, and the input
distribution has been “averaged out” over many different
applications. However, over the long term, the model still
appears to be applicable even when assumptions are
violated. We will examine three cases where the
assumptions could be violated: non-stationary input
distributions, faulty corrections and imperfect diagnosis.

6.1 Non-stationary input distributions

In a stationary input distribution, there is a fixed,
time-independent probability for each possible input
value. In practice however, the software may have
different modes of use at different times. To illustrate
this, let us assume there are P disjoint partitions of the
input space, which represent P different modes of use.
Let us further assume that N/P faults can be activated in
each partition, and that there is continuous execution in
each mode for a time t/P. This is a “pseudo-stationary”
model where each space is effectively an independent
program. For this model we would predict a “saw-tooth”
bound for the MTTF since the usage time is effectively
zero when a new partition is entered. After time t, when
all partitions are covered, the MTTF bound in each
partition will be:

MTTF e
P

N

t

P

e

N
tt p, . .≥ =

This shows that, once the entire input space is
covered, the MTTF bound is identical to that achievable
in time t with only a single partition (P=1). Of course it
is unlikely that such a simplistic input distribution would
apply in practice, but for any periodic input distribution
we would expect short-term “peaks” in the failure rate
(when new areas of the input space are being explored).
In the long term however, the average probability of
activating an input value tends to a fixed value, so the
predicted bound should apply once the usage time
significantly exceeds the periodic interval.

6.2 Unreliable fault correction

A faulty correction may replace one fault with
another which could be of arbitrary size, and potentially
be located anywhere in the input space. Nevertheless, as
time progresses, the potential failure rate contribution of

the new correction-induced fault, λ c t| will be bounded

by:

λ c ct
e

t t| .()≤ − −1 1

where tc is the time of the correction. Once t tc>> , the

failure rate bound for the new fault will be very similar to
the one it replaced, so in the long term the prediction
based on the original number of faults will still apply.

The same argument can also be applied to the
additional faults that are introduced when there is a
functional upgrade to the software.

6.3 Imperfect diagnosis

In some cases (e.g. real-time systems) it is difficult to
identify the faults from the symptoms so multiple failures
will occur before the problem is identified and corrected.
If we take a simple model where d failures have to occur
for each fault before it is corrected, the effective failure
rate of a fault after time t will be:

λ λ
λ

it i

t

de
i

=
−

If this model is used, it can be shown that, for N
faults, the expected program failure rate after time t is:

λ t
Nd

e
t≤ −. 1

So poor diagnosis has the effect of “scaling up” the
failure rate contribution of each fault. Any system where
there was low probability of correction would have to
include this factor when making a reliability growth
prediction.

7 Empirical support for the theory

The theory suggests that, providing we can make an
independent estimate for the number of faults in the
software, $N , we can make a worst case bound prediction
for the expected future MTTF at any time t, namely:

MTTF
e

N
tt ≥

$

Even in cases where the operational profiles are non-
stationary, we might expect the bound to apply once
sufficient time has elapsed to average out the variations.
In addition, it seems that a perturbation introduced by a
faulty correction only has a marginal impact on the long
term prediction of the failure rate bound. Poor diagnosis
can have a major effect on reliability growth, but we do
have some grounds for believing that the model could be
used to predict the worst case bounds for reliability for
quite a broad range of applications, and the bound should
typically be within one order of magnitude of the
achieved reliability level.

7.1 Analysis of the PODS experimental data

The PODS project [2] was concerned with the
evaluation of dependency in diverse programs, but the
programs, faults and test data were retained for a follow-
up study [3]. The main merit of using this particular data
source is that the test input distributions were known and
had a stable input distribution profile, which is one of the
key assumptions in this model. The testing on the PODS
programs was performed back-to-back; when
discrepancies were observed, the fault was corrected and
testing continued. The following analyses treat the
program triple as a single program. The triple contained
31 distinct faults (some of which existed in more than
one program version). We have used this number as the
fault estimate, although in practice this figure would
have to be derived by independent means (e.g. from the
lines of code).

There is a problem of defining “usage time” for this
test data. After a fault correction, the tests were repeated
from the beginning. On a model of perfect fault removal,
the tests prior to the last failure should always succeed
and so contribute nothing to fault detection. An
alternative measure of usage time would exclude the
earlier test data, except when correction-induced faults
are found. In the following analyses the second definition
of usage time is used. Figure 9 shows the growth in time-
to-failure (TTF|t) using random input distribution test
data.

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1E+06
Usage Time (cycles)

TTF
(cycles)

TTF

Bound
 (N=31)

Figure 9 Growth of time to failure: PODS uniform random
test data (note axes are logarithmic)

The predicted lower bound is also plotted on the
figure, assuming N=31. It can be seen that most TTFs lie
above the bound. The bound actually relates to the
average TTF, so statistically some TTFs could fall
outside the limits. The one point that falls a long way
below the line is known to be a correction-induced fault,
but this has little impact on subsequent reliability growth.

A similar analysis was performed using test data
based on simulated plant operation, and a very similar
pattern was observed.

7.2 Analysis of Musa SYS1 and SS3 data

The Musa data sets [12] do not give much
background information about the operating context, so
we do not know whether the operational profiles were
static or varied with time. This may account for the
extreme short term variations in TTF observed in the
data.

As there are many observed failures and relatively
low growth, it seems reasonable to take the average of 10
TTFs to form an estimate for the MTTF. The results are
shown in Figures 10 and 11. Error bars on each point
represent one standard deviation. The actual number of
faults is unknown, but it will be at least equal to those
already observed. In the examples, we have assumed that
the actual number of faults is around 1.5 times the
number of known faults. The worst case bound prediction
was applied to the data series for SYS1 and SS3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

Prior Usage (hours)

MTTF
(hours)

MTTFs

 Bound
 (N=200)

Figure 10 Reliability growth (Musa SYS 1)

The wide swings in reliability (even when using
averaged data) suggest that the input distributions are far
from stable. The decreases in reliability could relate to
new modes of operation or new types of testing, so it is
not clear that the model assumptions have been satisfied.
The observed MTTF is sometimes lower than the
predicted bound, but this would be expected with a
varying operational profile which could well result in a
“saw-tooth” pattern of failure rates. In the longer term
the growth does seem to be in reasonable accord with the
model. This may indicate that all the major modes of
operation have been explored, so that the averaged input
distribution is beginning to stabilise.

0

1

2

3

4

5

6

7

8

0 200 400 600

Usage Time (days)

MTTF
 (days)

MTTF
Bound
(N=400)

Figure 11 Reliability growth (Musa SS3)

7.4 Tropico-R teleswitch data

In [8] the reliability growth of three generations of
teleswitch equipment have been analysed. Much of the
detailed data are confidential, but information is
available about: the number of known faults; the software
size; and the failure rate over time. Most of the reliability
growth data are based on operation in the field. One
complicating factor is that new systems were being
progressively installed on different sites, each with a
different operational profile and possibly different
software options, so that new parts of the input space
could be covered for each new installation. The results
for one generation of teleswitch (Tropico-R PRB) are
shown below. We have again used a fault estimate which
is 50% greater than the known faults.

0.001

0.01

0.10

1.00

10.00

0.0 0.1 1.0 10.0 100.0

Prior Usage Time (years)

MTTF
(years)

MTTF

Predicted Bound
(N=175)

Figure 12 Tropico R PRB reliability growth
(note axes are logarithmic)

As in the previous example the error bars shown
represent one standard deviation. It can be seen that the

MTTF sometimes exceeds the lower bound by more than
an order of magnitude. The high MTTFs at the initial
stages are probably associated with validation testing
(which may not match operational use). The low values
observed after extensive usage appear to be related to the
installation of new switches, where the system
configuration or usage pattern may activate new faults.
The same pattern can be observed in the development of
the other generations of system (PRA and PRC).

8 Reducing prediction pessimism

For cases where the fault density function is not a
spike, the bound is unduly pessimistic. Additional
information from the observed failures could be used to
reduce this pessimism while remaining conservative, e.g.
by:
1. updating the residual fault estimate when faults are

detected
2. estimating the shape of the fault density function

based on failure data.
In the first approach we still assume the density

function for the residual faults is a spike, but of course N
is smaller, and the revised value can be used to compute
a new bound. The main problem with this approach is in
maintaining conservatism about the remaining number of
faults; a simplistic updating procedure could result in a
negative number of faults. To be effective more
sophisticated residual fault estimation techniques are
needed (e.g. [13]) which retain some conservatism.

In the second approach, we could assume that the
fault density function follows a gamma distribution and
estimate the α and β parameters from the observed
failures, (e.g. from the variation of the effort factor (Mt)
with usage time). Such approaches have been used in
many reliability models [4], but the estimates are usually
unstable due to short-term variations in the time-to-
failure.

A less ambitious approach is to introduce a constraint
on the σ function to fix the total failure rate for the N
defects and then calculate the worst case density function
at any given time. It can be shown from equation 12, that
the initial failure rate is:

λ αβo = N
If we use a measurement of the initial failure rate, we

can infer that the average failure rate for a fault is λo/N
and this fixes the location of the “spike” in the failure
rate spectrum. With the gamma model, the maximum
fault density always occurs at λ = λo/N, but for usage
times greater than N/λo the density function that gives
the worst case growth is no longer a spike. The optimum
shape for worst case growth gradually changes as time
increases (the spike is gradually “squashed” to cover
higher and lower failure rates around the peak). In the

limit, the distribution tends towards that for the
reciprocal model.

This behaviour can be best visualised by considering
the “effort factor” for reliability growth. The larger this
number is the harder it is to achieve reliability growth.
To achieve the worst case growth estimate, we would
therefore seek to maximise Mt for all values of t. The
effort factors for different distribution shapes (different α
values) are shown in Figure 13 below. The worst case
effort factor is the envelope of maximum values traced
out as we vary α. On the left-hand side of the peak, the
effort factor is a maximum when α = ∞ (the “spike”
density function). On the right hand side the maximum
effort factor occurs with a greater spread of failure rates.
For large values of t, the worst case growth occurs when
α → 0 (the reciprocal distribution discussed earlier).

0

5

10

15

20

25

30

35

40

0.001 0.01 0.1 1 10 100 1000

alpha = 10
alpha = 1
alpha = 0.1
alpha = 0.05

Effort
Factor

λ
N

to

Simple Bound

Gamma Bound

Figure 13 Worst case effort factor over time (N=100)

The figure also shows the effort factor for the simple
theory. In the simple theory, we have no data on the
position of the fault density peak so we have to assume
the worst case value for all usage times. It can be seen
that less pessimistic growth rates are obtained for the
gamma model, and the simple model represents a bound
for the gamma model.

This gamma model still operates on quite limited
data, namely an estimate of the number of residual faults
combined with a measurement of the initial failure rate.
Since the model assumes the worst possible fault density
function for all usage times, the model should still be
conservative but less pessimistic than the simple theory.
It should be noted that, since it computes a worst-case
bound, the gamma estimate has the same basic shape for
any reliability prediction; the same basic curve is simply
rescaled based on the number of residual faults and the
measurement of the initial failure rate.

This revised model has been assessed against
empirical reliability growth data and does seem to be less
pessimistic. The bound for the Tropico PRB teleswitch
system is shown below.

0.00

0.01

0.10

1.0

10

0.01 0.10 1.0 10 100

Prior Usage Time (years)

MTTF
(years)

Gamma Bound
(N=175)

0.003yr)(TTF =o

Simple Bound
(N=175)

Validation Operation

Figure 14 Tropico PRB reliability growth – simple vs.
gamma worst case bounds

For the Tropico PRB development there was a nine
month period of validation testing prior to operation. It
can be seen that some unrealistic failure rate values were
obtained during the early period of validation testing.
While the validation time has been included in the figure
above, the initial failure rate is estimated from the first
period of actual operation. An error in the estimate of the
initial failure rate affects the point where the gamma
bound touches the simple bound, but it does not have a
major impact on the long term trend because the ratio of
gamma bound to the simple bound tends toward a
relatively stable value. For long-term growth, i.e. one or
two orders of magnitude beyond the time where the two
bounds touch, the gamma bound is typically 3 to 5 times
less pessimistic than the simple bound.

The results illustrate a difficulty of using the gamma
model. It presupposes that the initial failure rate is
“typical” and hence that the input distribution is
relatively unchanging over time. When the input
distribution does change, the bound can be too optimistic.
This also applies to the simple theory, but this is
inherently more conservative. so violations of the bound
are less frequent.

Nevertheless, the general fit of the worst case gamma
curve is quite good. Starting with an initial failure rate of
around one per day, the model makes forward predictions
to failure rates of around one per year and these
predictions are accurate within a factor of three. This is
an improvement on the simple model, which can
underestimate the achieved reliability by up to one order
of magnitude.

9 Concluding remarks

Based on some relatively standard modelling
assumptions, we have derived a worst case bound for
software reliability growth, where:

λ t ≤ N

et
This prediction depends on a number of assumptions,

namely: a stable input distribution, perfect diagnosis and
perfect correction; but we have also shown that the
predictions might be relatively insensitive to assumption
violations over the longer term. The empirical data
drawn from field experience seems to support the general
results of the theory, but much of the data is taken from
high-volume industrial systems where the assumptions
are most likely to apply. Further work is desirable to
check the applicability of the model assumptions and the
theory.

It has also been shown that the worst case bound
prediction can be unduly pessimistic, possibly by as much
as one order of magnitude. It is possible to make less
pessimistic, long-term bound predictions by assuming
gamma-distributed failure rates and including a
measurement of the initial failure rate. This extension to
the simple bound theory also seems to be consistent with
the empirical field data and estimates bounds within a
factor of three.

By its very nature, a theory that makes a bounding
estimate will always be less accurate than a conventional
reliability growth model over the short term. However the
general approach of incorporating prior knowledge about
the software does seem to be a powerful one and, unlike
conventional reliability growth theories, it can make
conservative predictions of reliability growth over the
long term (e.g. many hundreds of years of usage time).

Another attractive feature of the theory is that it
makes a quantitative link between the number of faults
and reliability. This provides a numerical justification for
the conventional wisdom encapsulated in existing
standards for high integrity software, which seek to
minimise faults by implementing high quality production
methods and by placing restrictions on software
complexity.

Acknowledgements

We wish to thank Professor B. Littlewood for his
constructive comments and criticism.

This work was funded by the UK (Nuclear) Industrial
Management Committee (IMC) Nuclear Safety Research
Programme under Scottish Nuclear contracts 70B/-
0000/006384 and PP/74851/HN/MB with contributions

from British Nuclear Fuels plc, Nuclear Electric Ltd and
Scottish Nuclear Ltd.

References

[1] A.A. Abdel-Ghaly, P.Y. Chan and B. Littlewood,
“Evaluation of Competing Software Reliability
Predictions,” IEEE Trans. on Software Engineering, vol.
SE-12, no. 9, pp. 950–967, 1986.

[2] P.G. Bishop et al, “PODS a Project on Diverse
Software”, IEEE Trans. Software Engineering, Vol. SE-
12, No. 9, 929-940, pp. 929–940, 1986.

[3] P.G. Bishop et al, “STEM: a Project on Software Test
and Evaluation Methods”, Safety and Reliability Society
Symposium 1987 (SARSS 87), Manchester, Elsevier
Applied Science, ISBN 1-85166-167-0.

[4] S. Brocklehurst, P.Y. Chan, B. Littlewood and J. Snell,
“Recalibrating software reliability models,” IEEE Trans
Software Engineering, vol. SE-16, no. 4, pp. 458–470,
1990.

[5] J.R. Gaffney, “Estimating the Number of Faults in Code”,
IEEE Trans. Software Engineering, vol. SE-10, no. 4,
1984.

[6] A.L. Goel and K. Okumoto, “Time-Dependent Error-
Detection Rate Model for Software and Other
Performance Measures,” IEEE Trans. on Reliability, vol.
R-28, no. 3, pp. 206–211, 1979.

[7] Z. Jelinski and P.B. Moranda, “Software Reliability
Research,” in Statistical Computer Performance
Evaluation, pp. 465–484, New York, Academic Press,
1972.

[8] K. Kaaniche, K. Kanoun, M. Cukier and M. Bastos
Martini, “Software Reliability Analysis of Three
Successive Generations of a Switching System”, in First
European Conference on Dependable Computing
(EDCC-1), (Berlin, Germany), pp. 473–490, Oct. 1994.

[9] B. Littlewood, “Forecasting software reliability,” in
Software Reliability Modelling and Identification, pp.
141–209, Heidelberg, Springer, 1988.

[10] B. Littlewood and L. Strigini, “Validation of ultra-high
dependability for software-based systems,” CACM, vol.
36, no. 11, 1993.

[11] M.Lipow, “Number of Faults per Line of Code”, IEEE
Trans. Software Engineering, vol. SE-8, no. 4, 1982, pp.
437–439, 1982.

[12] J.D. Musa, “A Theory of Software Reliability and its
Application,” IEEE Trans. on Software Engineering, vol.
SE-1, pp. 312–327, 1975.

[13] N.F. Schneidewind, “Software Reliability Model
with Optimal Selection of Failure Data”, IEEE
Trans. on Software Engineering, vol. 19, no. 4, pp. 1095–
1104, 1993

