
Data Rei�cation without Explicit Abstraction

Functions

T Clement

Adelard??,

Coborn House,

3, Coborn Road,

LONDON E3 2DA,

U.K

e-mail: tpc@adtclem.demon.co.uk

Abstract. Data rei�cation normally involves the explicit positing of

an abstraction function with certain properties. However, the condition

for one de�nition to reify another only requires that a function with

such properties should exist. This suggests that it may be possible to

carry through a data rei�cation without giving an explicit de�nition of

the abstraction function at all. This paper explores this possibility and

compares it with the more conventional approach.

1 Introduction

An abstract type is a type name equipped with some operations, usually with
parameters or results of other, previously de�ned, types. The signature of the
abstract type gives the names of the operations and their types: for example,
the abstract type Set , representing sets of integers, might have signature

empty :! Set

add :Z� Set ! Set

elem:Z� Set ! B

Because empty and add have results of type Set , they are said to be constructors
of the type. The function elem is an observer because its result is of a prede�ned
type. For technical reasons, it is convenient to consider only signatures with
results of single types rather than tuples, so all operations are either constructors
or observers.

In the model based approaches to formal speci�cation, such as VDM or Z, an
abstract type is de�ned by de�ning a set of values for the type name and de�ning
the operations as (possibly partial) functions on this set and others corresponding
to the prede�ned types. The signature is usually a part of these de�nitions
rather than separate as above. It is possible to give many de�nitions of the same
signature (which is why it will be convenient to separate it out here), and these
will be distinguished by subscripting the type name and operation names. In

?? This work was carried out while at the University of Manchester

particular, when discussing rei�cations, the de�nitions of the speci�cation will
be identi�ed by subscript S and those of the implementation by subscript I.

One de�nition of abstract type T will implement another by data rei�cation
if the value of every term of the signature of type other than the abstract type
(of visible type) is the same in both speci�cation and implementation whenever
it is de�ned by the speci�cation. This will be the case if there exists a (pos-
sibly partial) function �:TI ! TS (an abstraction function) such that for all
operations op:T ! T in the signature the square

t t

t t

6

-

-

6

xI

�(xI)

opI(xI)

opS(�(xI)) =

�(opI(xI))

� �

opS

opI

commutes whenever the upper path is de�ned. (A justi�cation will be found in
Clement(1993)). Using Æ(t) to signify that term t is de�ned, we can write this
rei�cation condition for an operation formally as

8x 2 TI � Æ(opS(�(x)))) �(opI(x)) = opS(�(x))

If there is a parameter of a prede�ned type, this becomes

8x 2 TI ; y 2 Y � Æ(opS (y ; �(x)))) �(opI(y ; x)) = opS(�(x))

while for observations (with no parameters) it reduces to

8x 2 TI � Æ(opS(�(x)))) opI(x) = opS(�(x))

The traditional approach to data rei�cation is to posit an implementation repre-
sentation of the abstract type and de�nitions of the operations of the signature
on it, and then to posit a function and prove that it has the desired properties.
In the alternative, calculational, approach (Darlington (1984); Morgan & Gar-
diner (1990)), the rei�cation conditions are used as the de�ning properties of the
operations. A more algorithmic de�nition working directly on the new represen-
tation can then be derived using conventional calculational techniques. However,
it is still necessary to pick a set of values for the type and posit an abstraction
function. Both are thus constructive approaches to showing the existence of an
abstraction function. This raises the question of whether a non-constructive ap-
proach is feasible: if so, it may o�er the advantage of not having to demonstrate
that a posited function satis�es the rei�cation conditions. In this paper we shall
look at such an approach and assess its bene�ts and limitations.

In the next section, we shall present the basic idea for total operations. The
techniques will be re�ned in Sect. 3 to deal with partial operations and abstrac-
tion functions. An extended example of the approach will be given in Sect. 4,
and this will be compared with a more conventional approach to the same prob-
lem in Sect. 5. The last section will summarize and draw some conclusions. The

paper assumes a familiarity with the basic de�nition of categories (this will be
found in Arbib & Manes (1975)) but more specialized standard results will be
summarized here for completeness.

2 Constructing Categories

We can construct an implementation of an abstract type with signature � in
the following way. We �rst �x interpretations for all the visible types of the
signature as sets: intuitively, we can see these as the interpretations �xed by
the prior speci�cations of these types (or the semantics of VDM). We can then
construct a heterogeneous algebra (Goguen, Thatcher & Wagner (1978)) for the
signature by taking these sets as the carriers of their types and some arbitary set
as the carrier of the abstract type (we shall write TA for the carrier of type T in
algebra A), and associating each constructor op in the signature with a function
opA from the appropriate carrier types to the carrier of the abstract type. (The
observer functions will be considered separately later.) The speci�cation of the
abstract type can be identi�ed with one such algebra, where the abstract type
carrier is the set corresponding to the model chosen in the speci�cation, and the
functions meet the speci�cations of the operations.

We de�ne a morphism from algebra I to algebra S to be an indexed collection
of functions

� = f�T :TB ! TA j T is a type in the signatureg

For the visible types, we �x each function as the appropriate identity function:
for the abstract type, any function satisfying the rei�cation conditions on the
constructors is allowed.

The algebras and morphisms together form a category. (Clearly, the identity
function on the abstract type provides an identity morphism, and identities com-
pose to give identities while composition preserves satisfaction of the rei�cation
condition.) The category is a subcategory of one which is well known in algebraic
speci�cation (see Ehrig & Mahr (1985), for example), where there is a free choice
of carrier sets for all types in the signature, and for each function op:T1� : : :Tn
! T the morphisms satisfy the condition

�T (opI(x1; : : : ; xn)) = opS(�T1
(x1); : : : ; �Tn

(xn))

(This is easily seen to specialize to the rei�cation condition if all the �T functions
for visible T are identities.)

The full category has initial objects: that is, objects with a (unique) morphism
to every object of the category. One initial object (the term algebra T�, or T
when the signature is clear from the context) is constructed by taking the set
of terms of each type as the carrier of that type (the signatures that arise in
algebraic speci�cation have constructors of all types) and de�ning the function
corresponding to an operation to map terms to the application of the operation
to those terms. The morphism to any algebra A (to be written A) uses the
functions ofA to evaluate the term from the term algebra, so for any constant c in

the signature cA = cA and for any term op(t), (op(t))A = opA(t
A). This clearly

satis�es the condition on morphisms. Any other object which is isomorphic to
this is also initial.

The category we have just constructed also has initial objects. One can be
produced using the construction above for the carrier of the abstract type, but
using values from the other carriers rather than terms of the type as parame-
ters. We shall call this the relative term algebra, and also denote it by T and
the morphism to any other algebra by A. Since initial objects have a mor-
phism to all objects, and the speci�cation is one of the objects of the category,
the relative term algebra de�nes an implementation of the type and its construc-
tors. (Intuitively, an abstract type can be implemented whatever its speci�cation
by remembering in its values the values and operations used in their construc-
tion, since this gives enough information to de�ne any observation.) In general,
algebras isomorphic to this (and hence also initial) will give more interesting
implementations.

For example, consider implementing sets with the signature of Sect. 1. Since
they are prede�ned in VDM, the speci�cation is trivial

emptyS = f g

addS(n; s) 4 s [fng

elemS(n; s) 4 n 2 s

The carrier of the abstract type in T is terms of the form

add(n1; add(n2; : : : add(nn ; empty)))

(which we can abbreviate as addn (n1; : : : ;nn ; empty)). The following de�nition
describes an algebra which is more useful as an implementation.

SetI = X �

emptyI = []

addI(x ; s) 4 cons(x ; s)

(It is easy to see that it is isomorphic to the relative term algebra, but this could
be veri�ed by exhibiting a formal de�nition of the isomorphism.) This is a well-
known implementation, of course, but the justi�cation given by this approach is
by appeal to abstract mathematics rather than by detailed calculation, and of
course the abstraction function has not been made explicit.

We still need to derive an implementations of the observation elem. Following
the calculational style of Darlington (1984), we use the rei�cation condition to
state an equality the implementation must satisfy

elemI(x ; s) = elemS(x ; �(s))

To �nd a de�nition of elemI with no uses of � satisfying this equation, we can
consider cases of the structure of the set representation:

elemI(x ; []) = elemI(x ; emptyI)
= elemS(x ; �(emptyI))
= x 2 emptyS
= false

elemI(x ; cons(y ; s)) = elemI(x ; addI(y ; s))
= elemS(x ; addS(y ; �(s)))
= x 2 (fyg [�(s))
= x = y _ x 2 �(s)
= x = y _ elemI(x ; s)

The strategy is to express each value of the type as a term of the signature.
(This is always possible, because the values are reachable by construction: the
algebra has no junk.) We then apply the rei�cation condition for the construc-
tors, and use the de�nitions from the speci�cation to deduce a simpler form of
the equality. Recursion is introduced by using the de�ning equation again. The
resulting equations clearly hold of the following VDM function de�nition, which
expresses the expected implementation.

elemI(x ; s) 4 cases s of

[]! false

cons(y ; s)! x = y _ elemI(x ; s)
end

There are of course many implementations of speci�cations with signature �
which are not isomorphic to T�. To calculate more of them, we need to de�ne
other categories with de�nitions (including the speci�cation) as objects and func-
tions satisfying the rei�cation conditions as morphisms, and with initial objects.
The theory of algebraic speci�cation tells us that the category of all algebras
satisfying a given set of equations is known to have initial algebras, and this
remains true when we restrict the category by �xing carriers of visible types.
The equations are then only needed to restrict the possible choices for the ab-
stract type, and should therefore only involve terms of that type. Any choice of
equations satis�ed by the speci�cation will de�ne an implementation, although
some of these implementations will be of more interest than others.

The carrier of the abstract type in an initial algebra I�;E in the category
generated by signature � and set of equations E can be constructed from T�

by partitioning it into sets which are provably equal given the equations and
the usual properties of equality. This clearly satis�es the equations, but \only
just": no terms which do not have to be equal are equal. We say that there
is no confusion. If we write [t] for the set of terms equal to t , the operations
are de�ned by opI([t]) = [op(t)]. This is well de�ned because equality is a
congruence. We shall call the result the quotient algebra of � and E . It is initial
because a morphism � can be de�ned to any other algebra A satisfying E by
taking �([t]) = tA. This is well de�ned because there is no confusion in the
quotient algebra. It is obvious that for any term t , tA = �(tI): that is, that

t

t t-

Q

Q

Q

Q

Q
Qs

6

T

I

A

�

A

I

commutes.

As an example of calculating an implementation using equations, we may
take sets with the following signature:

empty :! Set

unit :X ! Set

union:Set � Set ! Set

elem:X � Set ! B

with speci�cation

SetS = X -set

emptyS = f g

unit(x) 4 fxg

unionS(s1; s2) 4 s1 [s2

elemS(x ; s) 4 x 2 s

The constructor terms from this signature are empty , unit(x) for all x in the
carrier, union(empty ; unit(x)), union(unit(x1); unit(x2)) and so on: they are iso-
morphic to the more familiar structure of binary trees with the values in the
leaves only, unit corresponding to the leaf constructor and union to the binary
tree constructor. To arrive at the sequence representation from this signature
and set of de�nitions, we show that the equations

union(empty ; s) = s

union(s ; empty) = s

union(s1; union(s2; s3)) = union(union(s1; s2); s3)

hold of the speci�cation (trivially in this case, as properties of [) and consider
the category of algebras where these equations hold of the union function. The
equations for sets equate terms containing empty with terms which do not (ex-
cept for empty itself, which is in a partition of its own), and equate terms where
the same elements appear in the same order as arguments to unit to each other
irrespective of how these are distributed as arguments to union. In looking for

isomorphic models, it is often helpful to select a canonical term from each par-
tition and look at its form. The equations will rewrite any term to one of the
form

union(unit(x1); union(unit(x2); : : : ; union(unit(xn ; empty))))

(deliberately putting back one empty) and these are readily seen to be isomorphic
to sequences [x1; : : : ; xn], giving the de�nition

SetI = X �

emptyI = []

unitI(x) 4 [x]

unionI(s1; s2) 4 append(s1; s2)

To derive the expected de�nition of elemI , we may begin again with the de�nition
derived from the rei�cation condition.

elemI(x ; s) 4 elemS(x ; �(s))

Considering cases of the value of s again, the derivation of elemI(x ; []) = false

goes through as before and

elemI(x ; cons(y ; s)) = elemI(x ; unionI(unitI(y); s))
= elemS(x ; �(unionI(unitI(y); s)))
= elemS(x ; unionS(unitS(y); �(s))))
= elemS(x ; unionS(unitS(y); �(s))))
= elemS(x ; unitS(y)) _ elemS(x ; �(s))
= x = y _ elemI(x ; s)

giving the same de�nition as above.

3 Partial Operations

Most abstract types have operations which are not de�ned everywhere on the
type. For example, in the signature

empty :Stack
push:Z� Stack ! Stack

pop:Stack ! Stack

top:Stack ! Z

we do not expect pop and top to be de�ned on empty . In VDM, such operations
are de�ned as potentially partial functions, so abstract type de�nitions are partial
(heterogeneous) algebras (Broy & Wirsing (1982)). The rei�cation condition of
Sect. 1 allows for a partial function to be implemented by one which is more
de�ned. (This is reasonable in circumstances where all uses of a function are

proved to lie in its domain, as they are in VDM.) It also allows the abstraction
function itself to be partial.

As before, abstraction functions can be extended to provide abstraction mor-
phisms on partial algebras by adding (total) identity functions for the carriers of
the prede�ned types. The class of all partial algebras for a given signature and
interpretation of the prede�ned types together with the abstraction morphisms
again forms a category. Unlike the categories built on total algebras, there are
in general no initial objects. However, the relative term algebra, which is of
course total, is privileged in the sense that it has at least one morphism to every
other algebra A and hence remains an implementation. (Once again, because it
remembers everything about the construction of the value, it is not surprising
that anything can be implemented using it.) We can construct this morphism
as before by giving terms which are de�ned in A their value there. Those which
are not are left unmapped. This is easily seen to satisfy the rei�cation condition,
and is the morphism we shall denote by A. However, it may also be possible
to map unde�ned terms to some value in A while still satisfying the rei�cation
condition (one not in the domain of any operation in A will do), which is why
there is not always an initial object. Similarly, when the category of algebras is
restricted to one where the operations on the new type satisfy given equations,
the (total) quotient algebra has a morphism � to every other algebra A in the
category: again, it maps the value [x] to xA (where xA is de�ned) and again,
this is well de�ned because equality is a congruence and the equations are sat-
is�ed by all the algebras. There is an issue here of what is meant by an algebra
satisfying an equation when some terms may be unde�ned. We shall take the
strong interpretation of equality: an instance of an equation will hold if the two
sides are de�ned and have the same value or if both are unde�ned.

Equations were introduced in Sect. 2 to de�ne restricted categories of alge-
bras with new initial objects and hence generate more possible implementations.
Now we want to introduce some further properties of algebras to generate im-
plementations where some of the functions are partial. This will be done by
using axioms of the form U (t) to say that term t is unde�ned. For example, we
might give U (pop(empty)) as an axiom on stacks. As with equations, the relative
term algebra provides the basis for constructing an algebra which just meets any
unde�nedness requirement. The carrier for the abstract type is constructed by
deleting from the set of terms all those which are demonstrably unde�ned: that
is, those containing terms which are explicitly stated to be unde�ned. (Functions
are strict in VDM.) For example, push(x ; pop(empty)) and similar terms will be
removed from the carrier as well as pop(empty). As usual, the operations just
map values to the term which is the application of the operation to those values:
where this is an unde�ned term the operation is unde�ned. There is a morphism
� to any algebra satisfying the unde�nedness axioms, and thus with at least the
same terms unde�ned. It is essentially that constructed from the relative term
algebra, the di�erence being that the necessarily unde�ned terms do not appear
in the carrier, rather than being left unmapped by the morphism. The algebra

just constructed is thus an implementation of any other algebra with the same
unde�nedness properties.

Equations and unde�nedness axioms can be combined. An initial algebra in
the category satisfying all the axioms can be produced by taking the quotient
algebra and deleting all sets of terms containing an unde�ned term from the
carrier. Where a function would have given such a set as a result, it becomes
unde�ned. The morphism to any algebra A satisfying all the axioms is de�ned
as usual to map [t] to tA when these are de�ned. Such morphism de�nitions
have the property that tA = �(tI), and hence � satis�es the stronger rei�cation
condition �(opI(x)) = opS(�(x)) (where the equality is strong in each case). As
before, we would usually look for a model isomorphic to the constructed one but
based on more familiar structures to provide the actual implementation.

As an example, this construction can be applied to stacks. The stack opera-
tions are known to satisfy the equation

pop(push(x ; s)) = s

This partitions the terms into two kinds of sets: those containing terms where
no subterm has more pops than pushes, which each have a canonical term of
form pushn (x1; : : : ; xn ; empty); and the rest, each containing a canonical term of
the form pushn (x1; : : : ; xn ; pop

m (empty)) (for m > 0 and n � 0). (The canonical
terms are achieved by using the equation to cancel as many pops as possible.)
The sets of the second kind clearly contain terms which are unde�ned as a
consequence of the U axiom above, and are deleted. The carrier is thus the sets
of the �rst kind, and their canonical terms clearly show them to be isomorphic
to the sequences [x1; : : : ; xn]. The empty sequence and cons operation are easily
seen to correspond to empty and push. A legal pop on a canonical term can be
cancelled with the preceding push to get a new canonical term with the �rst
push of the old one removed, while pop(empty) is unde�ned, so pop corresponds
to tl. This is the usual choice of model for stacks in VDM, constructed here from
an algebraic speci�cation.

There is a technical issue that arises when VDM is used to specify the ab-
stract type as a partial algebra. The domain of a function is characterized by a
precondition, and the semantics of the VDM standard (ISO (1993)) states that
the function must be de�ned when the precondition holds, but is not necessarily
unde�ned when it does not. However, the standard VDM rei�cation condition
is

8x 2 TI � Æ(�(x)) ^ pre-opS(�(x))) �(opI(x)) = opS(�(x))

which is also weaker and will be satis�ed by any implementation constructed as
described.

4 An Example

A more interesting example than those used above to illustrate the approach
arises in the implementation of substitutions for the eÆcient uni�cation algo-

rithm described in Boyer & Moore (1972). The signature of the operations on
substitutions needed by this algorithm is

empty :Substitution
update:VarSymbol � Term � Substitution ! Substitution

� :Term � Substitution ! Term

where the constant empty is a substitution having no e�ect on any term, update
adds a new binding of a term to a variable, and � applies a substitution to a
term. The prede�ned type VarSymbol is an arbitrary set, while Term may be
taken to be de�ned by

CT :: op : FnSymbol

args : Term�

Var :: v : VarSymbol

Term = Var j CT

We assume that a function vars(t) yielding the set of variables in term t is
prede�ned on Term.

Substitutions may be speci�ed as maps which bind variables to the terms
which will replace them when the substitution is applied.

SubstitutionS = VarSymbol
m

�! Term

where

inv -SubstitutionS(�) 4 8v 2 dom � � �(v) 6=mk-Var(v)

The invariant ensures a unique representation for substitutions, a property that
is usually desirable in abstract type speci�cations. The operations can then be
speci�ed by

emptyS = f g

�S :Term � Substitution ! Term

t �S � 4 cases t of

mk -Var(v)! if v 2 dom � then �(v) else t

mk -CT (f ; args)! mk -CT (f ; fi 7! args(i) �S � j i 2 inds argsg)
end

Æ (�1:Substitution; �2:Substitution) �:Substitution

post 8t 2 Term � t �S � = t �S �1 �S �2

updateS :Variable � Term � Substitution ! Substitution

updateS(v ; t ; �) 4 � Æ fv 7! t �S �g

pre v =2 dom � ^ v 62 vars(t �S �)

The composition operator Æ does not appear in the signature. It is de�ned
only to assist in the de�nition of updateS and so is not subscripted. The strange
de�nition of the function updateS re
ects the needs of the uni�cation algorithm,
and is is partial in a way which means that substitutions are always idempotent.
As a consequence, not all values of the type will be constructible. This is un-
usual (and in some ways undesirable) but will cause no particular problems in
this development. The invariant needed to restrict SubstitutionS to idempotent
substitutions just adds complexity to the de�nitions.

If we can �nd some equations that the operations satisfy and determine
which terms should be unde�ned, we shall have the basis for deriving a range of
implementations. It turns out that if the precondition is taken to characterize
unde�nedness exactly, updateS is commutative.

updateS(v1; t1; updateS(v2; t2; �)) = updateS(v2; t2; updateS(v1; t1; �))

To prove this, it helps to name the intermediate results of the two orders of
updating.

�0 = updateS(v1; t1; �) = � Æ fv1 7! t1 �S �g

�00 = updateS(v2; t2; �) = � Æ fv2 7! t2 �S �g

We can then establish some useful lemmas characterizing the domain of the
operation

Lemma 1.

pre-updateS(v1; t1; �) ^ pre-updateS(v2; t2; �
0)) v2 62 dom � ^ v1 6= v2

Proof. Obvious.

Lemma 2.

v1 6= v2 ^ pre-updateS(v1; t1; �) ^ pre-updateS(v2; t2; �
0)

) v2 62 vars(t2 �S �)

Proof. If v2 2 vars(t2 �S �), then it will also be in vars(t2 �S ��S fv1 7! t1�S �g).
But this is contrary to the second precondition.

Lemma 3.

v1 6= v2 ^ pre-updateS(v1; t1; �) ^ pre-updateS(v2; t2; �
0))

v1 62 vars(t2 �S �) _ v2 62 vars(t1 �S �)

Proof. If both v1 2 vars(t2�S �) and v2 2 vars(t1 �S �) then the �rst substitution

will leave occurrences of v1 which will be replaced by terms containing v2 by

the second substitution. But this is contrary to the second precondition, which

requires

v2 62 vars(t2 �S �0) = vars(t2 �S � �S fv1 7! t1 �S �g) :

Lemma 4.

v1 6= v2 ^ (v1 62 vars(t2 �S �) _ v2 62 vars(t1 �S �)) ^
v2 62 dom � ^ v2 62 vars(t2 � �))

pre-updateS(v2; t2; �
0)

Proof. It is obvious that v2 is not in the domain of �0, so the �rst conjunct of

pre-updateS(v2; t2; �
0) is satis�ed. If v1 62 vars(t2 �S �), then

t2 �S � �S fv1 7! t1 �S �g = t2 �S �

and so v2 62 vars(t2 �S �0). If v2 62 vars(t1 �S �)), we observe that

vars(t2 �S � �S fv1 7! t1 �S �g) � vars(t2 �S �) [vars(t1 �S �)

so again v2 62 vars(t2�S �
0). As a consequence, the second part of the precondition

is also satis�ed.

We can then establish that if one term is de�ned, the other is

Theorem 1.

pre-updateS(v1; t1; �) ^ pre-updateS(v2; t2; �
0) ,

pre-updateS(v2; t2; �) ^ pre-updateS(v1; t1; �
00) ,

v1 6= v2^(v1 62 vars(t2�S�) _ v2 62 vars(t1�S�))^v1 =2 dom �^v2 62 dom �^

v1 62 vars(t1 � �) ^ v2 62 vars(t2 � �)

Proof. The �nal formula is a conjunct of the �rst precondition and properties

which have been shown equivalent to the second precondition in the lemmas. It is

symmetric in its use of v1 and v2, so it is equivalent to the second formula too.

We can complete the proof of commutativity by showing that when de�ned the
terms are equal. The proof is by considering the values of the two substitutions
at all variables in their common domain.

Theorem 2.

pre-updateS(v1; t1; �) ^ pre-updateS(v2; t2; �
0))

(updateS(v2; t2; �
0)(v)) = (updateS(v1; t1; �

00)(v))

Proof.

We have

updateS(v2; t2; �
0) = �0 Æ fv2 7! t2 �S �0g

= � Æ fv1 7! t1 �S �g Æ fv2 7! t2 �S � �S fv1 7! t1 �S �gg

= � Æ fv1 7! t1 �S � �S fv2 7! t2 �S � �S fv1 7! t1 �S �gg;

v2 7! t2 �S � �S fv1 7! t1 �S �gg

Similarly

updateS(v1; t1; �
00) = � Æ fv2 7! t2 �S � �S fv1 7! t1 �S � �S fv2 7! t2 �S �gg;

v1 7! t1 �S � �S fv2 7! t2 �S �gg

It is enough, then, to show that the two substitutions

�1 = fv1 7! t1 �S � �S fv2 7! t2 �S � �S fv1 7! t1 �S �gg;

v2 7! t2 �S � �S fv1 7! t1 �S �gg

�2 = fv2 7! t2 �S � �S fv1 7! t1 �S � �S fv2 7! t2 �S �gg;

v1 7! t1 �S � �S fv2 7! t2 �S �gg

are equal when the updates are de�ned, which can be done by considering their

values at v1 and v2. We have

�1(v1) = t1 �S � �S fv2 7! t2 �S � �S fv1 7! t1 �S �gg

Since the preconditions hold, v1 62 vars(t2 � �) or v1 62 vars(t2 � �). If v1 62

vars(t2 � �), then

t1 �S � �S fv2 7! t2 �S � �S fv1 7! t1 �S �gg = t1 �S � �S fv2 7! t2 �S �g

because the second substitution makes no di�erence. Similarly, if v1 62 vars(t2��)
then

t1 �S � �S fv2 7! t2 �S � �S fv1 7! t1 �S �gg = t1 �S � �S fv2 7! t2 �S �g

still holds because the �rst substitution has no e�ect, and so its form is immate-

rial. In either case, we have �1(v1) = �2(v1). The argument for �1(v2) = �2(v2)
is the same, with the rôles of v1 and v2 reversed.

The quotient model satisfying this equation groups all terms which have the same
arguments to the series of updates, irrespective of order (since any ordering can
be transformed into any other). This is isomorphic to the bag of (vi ; ti) pairs.

Partial implementations turn out to be more interesting. Theorem 1 shows
that we cannot bind the same variable more than once. In conjunction with
commutativity, this can be de�ned by

U (update(v ; t1; update(v ; t2; �)))

The e�ect is to remove from the quotient model all sets containing terms with
repeated variables. The remaining sets associate at most one term with any given
variable, and their terms exhibit the bindings in all possible orders. They are
isomorphic to partial functions from variables to terms. This is the same model
as the speci�cation, but the operations are de�ned di�erently. In the relative
term algebra, updating � by binding v to t gives update(v ; t ; �). In the quotient
model, the equivalence class of terms with the same bindings is mapped to the
class including the new binding: in the isomorphic partial function model this
corresponds naturally to adding a new pair to the function. The term empty is
equivalent only to itself, and can be made to correspond to f g

emptyI = f g

updateI(v ; t ; �) 4 � [fv 7! tg

The updateI function is unde�ned if v 2 dom �: in the quotient algebra this
corresponds to an operation with a deleted set as a result. We could make the
domain explicit by writing

pre-updateI(v ; t ; �) 4 v 62 dom �

To arrive at the de�nition for substitution application based on this new repre-
sentation of substitutions, we use the rei�cation condition as usual.

t �I � = t �S �(�)

(Recall that this is now a strong equality.) We need to �nd a de�nition of �I with
this property. Considering cases, applying the rei�cation condition and unfolding
gives

mk-CT (f ; args) �I � =mk-CT (f ; args) �S �(�)

=mk-CT (f ; fi 7! args(i) �S �(�) j i 2 inds argsg)

=mk-CT (f ; fi 7! args(i) �I � j i 2 inds argsg)

mk-Var(v) �I � =mk-Var(v) �S �(�)

= if v 2 dom (�(�)) then (�(�))(v) else mk-Var(v)

The �rst equation immediately suggests a de�nition of �I for compound terms,
but the second needs work to remove the uses of �. That in the condition can
be removed using

Theorem 3. Æ(�(�))) dom � = dom (�(�))

Proof. By induction over �. The induction principle for maps given in Jones

(1990) is essentially

P(f g) x 62 domm;P(m) ` P(fx 7! yg [m)
8m � P(m)

The base case is established by

dom (�(f g)) = dom (�(emptyI))
= dom (emptyS)
= dom f g

while the inductive case is proved by

dom (�(fv 7! tg [�)) = dom (�(updateI(v ; t ; �)))
= dom (updateS(v ; t ; �(�)))
= dom (�(�) Æ fv 7! t �S �(�)g)
= dom (�(�)) [fvg
= dom � [fvg

= dom (fv 7! tg [�)

The proof strategy is to rewrite the values as applications of constructors and
use the rei�cation condition and speci�cation de�nitions to simplify just like
the synthesis of elemI in Sect. 2. It depends heavily on the stronger rei�cation
condition established in Sect. 3.

To simplify the expression in the then arm, observe that if v is in the domain
of �, it was put there by an update, and since the order of updates is unimportant,
there is some �0 and t such that � = updateI(v ; t ; �

0). We may then show

Theorem 4.

Æ(�(updateI(v ; t ; �))))

�(updateI(v ; t ; �))(v) = (updateI(v ; t ; �))(v) �I (updateI(v ; t ; �))

Proof.

Applying the stronger rei�cation condition and unfolding, we have

�(updateI(v ; t ; �))(v) = updateS(v ; t ; �(�))(v)
= (�(�) Æ fv 7! t �S �(�)g)(v)
= (�(�))(v) �S fv 7! t �S �(�)g)
= t �S �(�)

If �(updateI(v ; t ; �)) is de�ned, we must have pre-updateS(v ; t ; �(�)), and so

v 62 vars(t �S �(�)). Hence

t �S �(�) = t �S �(�) �S fv 7! t �S �(�)g
= t �S updateS(v ; t ; �(�))
= (updateI(v ; t ; �))(v) �I (updateI(v ; t ; �))

Now the body of the variable case reduces to

if v 2 dom � then (�(v)) �I � else t

and there is a convenient de�nition with these properties to use as an implemen-
tation

t �I � 4 cases t of

mk -Var(v)! if v 2 dom � then (�(v)) �I � else t

mk -CT (f ; args)! mk -CT (f ; fi 7! args(i) �I � j i 2 inds argsg)
end

5 Comparison

A more conventional development, positing implementation de�nitions and an
abstraction function and then showing that the rei�cation condition used here
holds, is presented in Clement (1994) as a contrast with the usual VDM ap-
proach to rei�cation: the relationship between the two is explored in more detail
there. Here we want to compare that posit-and-prove development with the cal-
culational development given here.

The most important practical consideration is the diÆculty of constructing
the proofs needed to justify the implementations. In the posit-and-prove ap-
proach, establishing that the rei�cation condition holds involves a large amount
of detailed reasoning using our intuition for how the implementation and the ab-
straction function work. In this particular development, the abstraction function
is an iterated composition of the representation, and the arguments are based
on how many iterations will be needed to guarantee that further iterations pro-
duce no change. Because the de�nitions involve substitutions, properties of the
substitution operations are used widely throughout the proofs: these properties
are taken as obvious in Clement (1994) but could be stated explicitly as lemmas
and even proved from the speci�cation.

In contrast, the approach using calculation presented here begins by estab-
lishing properties of the speci�cation, independent of any implementation. The
proof of commutativity is quite long, but only because the expanded formulae
are quite large: the actual reasoning is exclusively concerned with the same kind
of properties of substitutions that were used in the posit-and-prove approach
(and which are again assumed). It was certainly easier to develop. The result
of the proof is a theorem about the speci�cation, which is potentially useful to
de�nitions making use of the abstract type. This cannot be said of the rei�ca-
tion condition proofs of the posit-and-prove approach (although useful lemmas
may appear). The unde�nedness property follows from one of the lemmas of the
commutativity proof.

Once the properties have been determined, the term model has to be con-
structed and an isomorphic algebra found. This process has been presented in-
formally, but the steps are formally de�ned and it would at least be possible to
present a function connecting values in the quotient algebra with those in the
implementation and show that it is an isomorphism. However, commutativity is
well known to de�ne bags and the e�ect of the unde�nedness is reasonably clear
so the less formal development here should be suÆciently convincing. In general,
it seems more productive to exploit established results rather than prove every-
thing ourselves. The �nal step is the synthesis of the observations: the proof here
is very similar to that of the posit-and-prove development although it expresses
a calculation rather than justifying a posited de�nition.

In practical terms, then, the calculational approach seems to have an advan-
tage. This stems from avoiding an explicit de�nition of an abstraction function,
since if one were to be posited as in the usual calculi, the calculation of the
implementation of updateI would once again involve the details of how the im-
plementation works.

A more philosphical question is to compare the amount and nature of the
inspiration that was required to arrive at the implementation. This is, after all,
what the calculational approach is meant to reduce. In the posit-and-prove ap-
proach, it leads to the posited implementation and abstraction function. In this
case, the �rst informal idea is that recording the arguments to update will cer-
tainly be enough. Applying a substitution then means looking up each variable,
and substituting the resulting term in the same way using the rest of the bind-

ings. (This is already independent of the order in which the bindings are made.)
A simpli�cation of this process can be justi�ed by observing that substituting us-
ing the whole substitution makes no di�erence, because the precondition means
that the term cannot contain the variable it is bound to. It is this that suggests
the de�nition of the abstraction function as an n-fold iteration.

The inspiration in the calculational approach is in the choice of properties.
The unde�nedness is an obvious consequence of the precondition (although its
usefulness is less obvious at the start). Given that we need to be able to identify
the implementation from the quotient algebra, it helps to restrict attention to
simple algebraic properties like commutativity, but that still leaves a range of
possibilities, some of which may be easier to discount than others. This is typical
of calculational approaches: they de�ne a spectrum of possible ways to proceed
but some intuition for the expected �nal result of the calculation is necessary to
decide which way to go. In this case, the commutativity might be suggested by
the uni�cation algorithm which motivates these de�nitions: it generates a series
of updates, but could do so in any order. (It has to be said that in practice
(Manna & Waldinger (1981); Clement (1991)) the algorithm has been derived
for a single order of updates rather than making this observation.) Failing that,
the intuition for the posit-and-prove approach sketched above also tells us that
the implementation of update is commutative and thus its speci�cation should
be, so at least the intuition needed for calculation is no harder to come by than
that for posit-and-prove, even if there is limited evidence that it is easier.

On balance, then, the calculational approach seems to have advantages over
posit-and-prove when it can be applied. In principle, it always can be, since any
desired implementation can be given an algebraic de�nition, and it can then be
con�rmed that the properties hold of the speci�cation. (These properties can be
expressed in any language which allows us to construct objects with guaranteed
morphisms to all others: a number are described in Goguen & Burstall (1992).)
In practice, these algebraic de�nitions may need operations in their signatures
which were not in the original speci�cation. They could be added to the speci-
�cation to allow their properties to be checked, but this extra work makes the
approach look less attractive. It would be worth investigating examples of this
kind, but for the moment the method looks more appropriate to cases where the
implementations involve types with simple algebraic properties (although as we
have seen the speci�cations can be quite complex).

6 Summary

We have presented a way of constructing implementations from speci�cations.
They satisfy the VDM criterion that the implementation behaves like the speci�-
cation whenever the speci�cation is de�ned, but unlike the usual VDM approach
do not require the explicit statement of an abstraction function. Instead, the ap-
proach makes use of properties of the speci�cation, drawing heavily on the con-
structive aspects of the theory of algebraic speci�cation. In the special case where
operations and abstraction function are total, all the results presented are well

known in the algebraic setting, and only the application to model based speci�-
cation is novel. Partial algebras have also received some previous attention. The
robust morphism introduced in Broy (1985) corresponds to the rei�cation condi-
tion of Sect. 1 and the stronger condition satis�ed by the calculated abstraction
function corresponds to the weak morphisms of Broy & Wirsing (1982). (It is an
accident of nomenclature that the weak morphism is stronger than the robust
one!) However, their particular interest was in the identi�cation of morphisms
leading to algebras with initial or terminal algebras for speci�cation rather than
any application to implementation. (Both weak and robust morphisms give rise
to categories with terminal algebras.) The morphisms with initial algebras that
they de�ne have the empty algebra as initial model in the absence of axioms
saying that particular terms must be de�ned: this is in contrast to our approach
where the quotient algebras are total unless terms are explicitly declared un-
de�ned. By applying algebraic techniques in a model based setting we have
avoided the principal problem of algebraic speci�cation, which is the need to
give enough axioms to characterize the speci�cand uniquely: all we need here
are enough properties to characterize the wanted implementation.

Another approach to the calculation rather than positing of abstraction func-
tions is the SETS calculus of Oliveira (1992). There, the emphasis is on deriv-
ing abstraction functions (and invariants on the implementation) for structured
types given abstraction functions and invariants for the component types. There
seems to be scope for combining the two methods to construct complex spec-
i�cations without writing down abstraction functions: it should be possible to
combine their properties in much the same way that the functions themselves
are combined in the SETS calculus. However, technical di�erences in the details
of the rei�cation conditions used would have to be resolved.

It is worth saying that none of the approaches to data rei�cation is mechan-
ical: each has some elements of intuition guiding the choice of de�nitions or
properties and if the intuition is wrong then the formal development will fail
to go through. In the case of posit-and-prove, it will be some rei�cation condi-
tion that will fail to hold, and in the usual calculational approach, the de�ning
property of an observation based on the rei�cation condition may not lead to a
de�nition with no use of �. In this approach, a given set of properties may not
lead to interesting models or convenient de�nitions of the operations.

How relevant is this work to industrial practice? Categories are thought of
as abstract concepts even by mathematicians, and the computer industry does
not usually rush to take up abstract mathematics. This is a mistake if the goal
is to deliver more reliable software at lower cost. Reliability requires some kind
of proof, and proof is expensive and becomes more so as proofs become larger.
For this reason, the proofs in this development and in that described in Clement
(1994) are rigorous rather than formal: only a top-level view of the proof is
provided using phrases such as \by induction", and the reader is left to �ll in
the details. Not only are the proofs here shorter, but because they apply abstract
ideas, some of the gaps can be �lled in by reference to the standard literature

rather than by detailed reasoning in the speci�c area of the application. They
should thus be more convincing as well as less expensive.

References

M. A. Arbib and E. G. Manes. Arrows, Structures, and Functors: The Categorical

Imperative. Academic Press, 1975.

R. S. Boyer and J. S. Moore. The sharing of structure in theorem-proving programs.

In Machine Intelligence 7, pages 101{116. Edinburgh University Press, 1972.

M. Broy. Extensional behaviour of concurrent, nondeterministic, communicating sys-

tems. In Control Flow and Data Flow: Concepts of Distributed Programming, pages

229{276. Springer-Verlag, 1985.

M. Broy and M. Wirsing. Partial abstract types. Acta Informatica, 18:47{64, 1982.

T. Clement. Combining transformation and posit-and-prove in a VDM development.

In VDM'91: Formal Software Development Methods, pages 63{92. Springer Verlag,

1991.

T. Clement. Notes on data rei�cation. In FME'93 tutorial material, pages 151{190,

1993.

T. Clement. Comparing approaches to data rei�cation. In FME'94: Industrial Bene�ts

of Formal Methods (LNCS 873), pages 118{133. Springer Verlag, 1994.

J. Darlington. The design of eÆcient data representations. In Automatic Program

Construction Techniques, chapter 7, pages 139{156. Macmillan, 1984.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation, volume 6 of EATCS

Monographs. Springer-Verlag, 1985.

J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for speci�cation

and programming. Journal of the ACM, pages 95{146, 1992.

J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach to the

speci�cation, correctness and implementation of abstract data types. In Current

Trends in Programming Methodology, volume 4, 1978.

International Standards Organisation. Information Technology Programming Lan-

guages { VDM-SL First Committee Draft Standard CD 13817-1, November 1993.

Document Number ISO/IEC JTC1/SC22/WG19/N-20.

C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall Interna-

tional, 2nd edition, 1990.

C. C. Morgan and P. H. B. Gardiner. Data re�nement by calculation. Acta Informatica,

27:481{503, 1990.

Z. Manna and R. Waldinger. Deductive synthesis of the uni�cation algorithm. Science

of Computer Programming, 1:5{48, 1981.

J. N. Oliveira. Software rei�cation using the SETS calculus. In Proceedings of the 5th

Re�nement Workshop, Workshops in Computing, pages 140{171. Springer-Verlag,

1992.

