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Abstract

A large part of software engineering research suffers
from a major problem—there are insufficient data to
test software hypotheses, or to estimate parameters in
their models. To obtain statistically significant results,
a large set of programs is needed, each set comprising
many programs built to the same specification. We
have gained access to such a large body of programs
(written in C, C++, Java or Pascal) and in this pa-
per we present the results of an exploratory analysis of
around 29 000 C programs written to a common spec-
ification.

The objectives of this study were to:

o characterise the types of fault that are present in
these programs;

e characterise how programs are debugged during
development;

o assess the effectiveness of diverse programming.

The findings are discussed, together with the poten-
tial limitations on the realism of the findings.

1 Introduction

To date software engineering research has been
based on relatively small samples of programs; at most
a few tens of programs have been used in controlled
experiments to test hypotheses. Ideally far more pro-
grams, written to a common specification, are needed
to undertake statistical analyses, and many different
specifications are needed to demonstrate results are
generally applicable. In this paper we identify such
a body of programs, and present the results of our
exploratory analysis.
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The UVa Online Judge Website is an initiative of
Miguel Revilla of the University of Valladolid [8]. It
contains problems to which everyone can submit solu-
tions. The solutions are programs written in C, C++,
Java or Pascal. The correctness of the programs is
automatically judged by the ”Online Judge”. Most
authors submit solutions until their solution is judged
as being correct. There are many thousands of authors
and together they have produced more than 2 500 000
solutions to the approximately 1500 problems on the
website.

From the perspective of algorithm design, the pro-
gramming contest is a treasure trove. There appear to
be numerous of ways to solve the same problem. But
also for software reliability engineers this is the case:
there are even more ways to not solve the problem.
Most authors’ first submission is incorrect. They take
some trials to-in most cases-finally arrive at the correct
solution. What happens between this first submission
and their final one is illuminating.

Ideally analyses should be performed on different
sets of programs to identify common features. But
in this paper we focus on single set of 29000 C pro-
grams version written to a common specification, the
”3n+1"-problem. In this exploratory study, we exam-
ine three different aspects in software engineering:

e what types of faults are introduced;
e how programs are debugged during development;

e whether diverse programs are likely to be effec-
tive.

In the following sections we introduce the ”3n+1”-
problem, describe the environment used to test the
programs solutions and the results of our exploratory
studies of these issues. The relevance of our findings
are discussed and we make some conjectures that can
be evaluated in future studies.



2 The ”3n+1”-problem

The "3n+1"-problem can be summarised as
follows:

1. input n

2. print n

3. if n = 1 then STOP

4. if n is odd then n := 3n + 1
5 else n := n/2

6. GOTO 2

For example, given an initial value 22, the following
sequence of numbers will be generated 22 11 34 17 52
261340201051684 2 1.

It is conjectured that the algorithm above will ter-
minate (i.e. stop at one) for any integral input value.
Despite the simplicity of the algorithm, it is unknown
whether this conjecture is true. It has been verified,
however, for all integers n such that 0 < n < 1000000
(and, in fact, for many more numbers than this).

Given an input n, it is possible to determine the
length of the number sequence needed to reach the
final value of one. This is called the cycle-length of n.
In the example above, the cycle length of 22 is 16.

The ”3n+1"-problem specification includes the fol-
lowing requirements:

e For any two numbers ¢ and j you are to deter-
mine the maximum cycle length over all integers
between and including ¢ and j.

e The input will consist of a series of pairs of in-
tegers 7 and j, one pair of integers per line. All
integers will be less than 1000000 and greater
than 0.

e For each pair of input integers 7 and j the output
is 7, 7, and the maximum cycle length for integers
between and including ¢ and j. These three num-
bers should be separated by at least one space
with all three numbers on one line and with one
line of output for each line of input.

The specification is supplemented by sample input
and output examples, e.g.:
Sample Input.
1 10
100 200
Sample Output.
110 20
100 200 125

3 Program submissions

The number of programs submitted to this prob-
lem is 66 696 at the moment of this analysis, of which
29102 are written in C. (We consider only those pro-
grams that are designated as being written in C by the
author, at this moment we do not include C++ pro-
grams that are C compatible.) The online judge clas-
sifies 7132 (24.5%) of these as correct, 10335 (35.5%)
as ”wrong answer” and 273 (0.9%) as ”presentation
error”. The latter category contains solutions that
do not exactly conform to the output specification,
but give the correct answer. The remaining 11362
(39.0%) programs contain fatal errors, take to long to
complete, use too much memory, or have other prob-
lems. In our analysis we only consider those programs
that are either marked as ”correct”, ”wrong answer”
or ”presentation error”.

The number of authors that submitted C programs
is 4317, 3444 (79.8%) of whom managed to solve the
”3n+1”-problem.

Figure 1: Number of submissions until last or correct
solution per author.
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The number of programs submitted per author, ex-
cluding those submissions after a correct submission,
is depicted in Figure 1, the average is 2.9.

4 Solutions to the problem

The example C program in Table 1 shows the ap-
proach most programs take. We will use the program’s
characterisation to describe the faults that authors
make.

Of course, the actual programs differ from this ex-
ample, but most programs take a similar approach and
only differ in aspects such as: the use of subroutines
for the sequence length calculation and the determi-
nation the maximum value. The programs that dif-



Table 1: Example program with typical algorithm.

Program

| Characterisation

#include <stdio.h>
#include <stdlib.h>

main ()

{

int a, b, min, max, num;
register n, cycle, cyclemax;

while (fscanf(stdin, "}d %d", &a, &b) != EOF) {
if (a < b) min=a; max=b; else min=b; max=a;

for (cyclemax=-1,
num=min; num<=max; num++) {

for (n=num, cycle=1; n != 1; cycle++)
if (n % 2) n=3*n+1; else n >>= 1;
if (cycle > cyclemax) cyclemax=cycle;

}

}
}

printf ("%d %d %d\n", a, b, cyclemax);

Variable declaration

Read inputs

Swap inputs

Reset maximum sequence length
Loop between bounds

Calculate sequence length
Determine maximum

Write outputs

fer most from the example are those that optimize on
speed. These programs can be lengthy and complex,
but constitute a minority.

5 Program testing

We submitted all the programs to a benchmark test.
The benchmark input is a list of 2 500 pairs of numbers
with all combinations of numbers between 1 and 50.
The outputs of the programs’ execution are written
to a file for later analysis. We deleted all output files
smaller than half the size of the correct output and
larger than twice its size, because we deemed these
programs to be incorrect. The output files smaller
than half the size are in general either programs that
do nothing at all (fake submissions) or only process
one or a few inputs. The output files larger than dou-
ble the size mostly contain intermediate results or text.

In our assessment, we discarded the programs by
authors who needed more than 30 attempts as they
were considered to be too incompetent to be typical of
normal programming (some authors managed to sub-
mit over 500 trial versions).

We were slightly more generous than the online
judge in assessing the output files. We only com-
pared the numbers in the output file, so if the output
file contains commas, empty lines or short text like
”The answer is:” we still treat it as a correctly for-
matted output. The reason for ignoring commas and

short texts might be questioned, but this decision sig-
nificantly reduces the number of different equivalence
classes generated and enhances the opportunities for
analysis.

After submitting a correct program, many authors
continue submitting, probably to optimise their pro-
gram, or make it faster. We are not interested in these
aspects, so we discard all programs of an author after
submission of a correct program.

When running and comparing these programs it
was striking how many different behaviours were ob-
served. In total, 400 different output results were gen-
erated. Many are only slightly different, but the fact
that such a simple program can be programmed in-
correctly in so many ways is surprising.

After eliminating programs that did not conform
to the criteria outlined above, a set of 11951 program
versions were available for subsequent analysis (cor-
rect: 3305, 27.7%; wrong answer: 8510, 71.2%; pre-
sentation error: 136, 1.1%). Three main analyses were
performed in this exploratory study:

e analysis of the types of fault introduced;

e analysis of the debugging process, e.g. what faults
are removed in successive ”releases” submitted by
the author;

e assessment of the effectiveness of diversity.



6 Analysis of program faults
6.1 Equivalence classes

We observed that there were many different pro-
grams that produced identical results. These were gen-
erally due to the existence of similar faults in the dif-
ferent versions. We grouped the program versions that
produced identical results into ”equivalence classes”
and used these equivalence classes in our subsequent
analysis. We only considered equivalence classes that
contain more than 5 programs.

After grouping the output files of the programs
into equivalence classes, we characterised them by the
faults they contained (see Table 2). The 36 most fre-
quent equivalence classes are shown, their total fre-
quencies, their frequencies of first and last occurrence,
together with the faults that were identified as being
present in that class of programs An assumption we
made here is that programs that behave similarly con-
tain the same kind of faults. This may not always be
correct, but no counterexamples have yet been found.

6.2 Types of fault

The characteristicis of the faults found in each
equivalence class are described below.

Swap: missing or incorrect. This is related to
test cases where input i is larger than input j. This is
normally handled by swapping the two input values.
(Strictly speaking a swap is not necessary, because
this functionality can also be implemented in the loop
by counting down, but most authors do not use this
alternative solution. So we have labelled this a ” Swap”
problem).

A missing swap indicates incorrect interpretation
of the specification: the author did not anticipate the
possibility that the second input may be smaller than
the first. This is the most frequent mistake: 31% of the
programs in the selected equivalence classes exhibit
this problem.

Incorrect implementation of the swap is less fre-
quent (14%), in most cases the author did not consider
the consequences for bouncing 7 and j. In some cases
it is caused by a slip in a routine programming task.

Write: incorrect order. Returning the input
values is one of the possible consequences of imple-
menting the swap incorrectly. The specification clearly
specifies that the returned inputs should appear in the
same order. The author manages to implement the
swap, but forgets to consider the consequences for the
write step. The problem is in general solved by either

returning the inputs before swapping or by remember-
ing the order of the inputs in separate variables.

Reset maximum sequence length. The author
forgets to reset the maximum sequence length for the
next set of input values (3.7%), In this case the pro-
gram will fail if the maximum sequence length for
these ¢, j values is lower than the highest one cal-
culated since the start of the program. This problem
is caused by not initialising the loop correctly.

Loop. There appear to be many ways to imple-
ment the loop incorrectly (3.6%). Most frequent is the
omission of the last element in the loop. An example
is shown below:

for (StartSequence = StartCounter;
StartSequence < LastCounter;
StartSequence++)

Another case is the omission of the first and the
last values in the loop, e.g.:

for(i=min(a,b)+1;i<max(a,b) ;i++)

Write. Some programs (3.4%) do not output a
new line between subsequent iterations.

Calculation. Very few programs (0.3%) contain
a fault in the calculation of the maximum sequence
length. This is probably due to the fact that if the
algorithm responds well to the sample outputs the al-
gorithm given in the problem specification, it will per-
form well for all inputs. The main problem found is
putting step 3—testing for n = 1—after step 4 and 5
in the program (see pseudocode in introduction).

6.3 Failure sets

We also plotted the failure sets that characterised
each equivalence class, i.e. for each input pair 7, j we
noted whether the result was a success or a failure and
plotted the failure set as a two-dimensional map. The
failure sets are shown in Figure 2.

The triangular pattern, e.g. a), i) and o), is related
to the i, j swap problem, i.e. the correct answer is
only generated when i is less or equal to j, but it can
be seen that there are several versions with identical
shapes. The difference is due to the different default
values used by the versions when there are zero it-
erations. The diagonal structures like h), p), q) and
s) are related to loop implementation problems where
either one or both of the ¢ , j endpoint values is not
included in the cyclic length calculation. An entirely
black square, n), is associated with problems like fail-
ing to generate any output, outputting in the wrong
format or generating too much output. The most com-
mon equivalence class was a completely blank square,
which represent the case where all test inputs were
correct.



Table 2: Equivalence classes and faults. Between brackets: consequences of the fault for another program step.

EC Freq. First Last Rel. Description
ECO00 3444 1512 3444 100.00 %  Correct program.
ECO01 1735 707 133 51.00 % Swap: missing. (Calculation: results in 0).
EC02 921 158 67 51.00% Swap: incorrect. (Write: bounces i and j in incorrect order when ¢ > j).
EC03 426 168 37 51.00% Swap: missing. (Calculation: leads to result 1).
EC04 295 77 17 52.84 % Reset maximum sequence length: not included after first calculation.
Swap: missing. (Calculation: results in maximum sequence length of all previous
calculations).
EC05 277 63 9 0.04% Output: no new line between outputs. (Often hides other faults.)
EC06 211 77 29 58.00% Swap: missing. (Loop: only lowest number when ¢ > j.)
ECO07 76 17 3 99.88 %  Calculation: wrong for n = 1, leads to result 4.
ECO08 74 12 2 26.96 % Reset maximum sequence length: not included after first calculation.
EC09 63 33 3 43.76 % Loop: highest element not included.
Swap: missing (Calculation: results in 0.)
EC10 63 16 1 87.52 % Loop: highest number not included, leads to result 0 when i = j.
EC11 60 11 22 52.96 % Swap: incorrect. (Write: After first time ¢ > j bounces inputs written in reversed
order when ¢ > j.)
EC12 39 10 3 54.96 % Swap: incorrect, leads to i = j = max(i,j) when ¢ < j.
EC13 38 6 5 0.04 % Calculation: missing, leads to result 1.
EC14 36 8 1 40.24 % Loop: lowest and highest number not included.
Swap: missing, leads to result 0.
EC15 36 2 1 87.52 % Loop: highest number not included. (Calculation: leads to result -1 when ¢ = j.)
EC16 35 4 3 99.96 %  Calculation: aborts when n = 1, leads to result 0.
EC17 32 16 1 50.92% Swap: missing. (Calculation: results in 0).
Calculation: wrong for n = 1, leads to result 4.
EC18 25 4 1 0.00% Calculation: result one too low.
Swap: missing. (Calculation: results in 0.)
EC19 24 6 1 50.96 % Calculation: aborts when n = 1, leads to result 0.
Swap: missing (Calculation: leads to result 0.)
EC20 21 3 1 92.00% Loop: lowest element not included.
EC21 21 7 2 50.92 % Loop: only lowest number when i < j
Calculation: wrong for n = 1 (program step 3 after 5), leads to result 4.
EC22 21 3 9 0.00% Print: second output is zero.
EC23 20 4 3 51.00 % Swap: incorrect, leads to i = j = min(z, ).
EC24 19 4 2 80.48 % Loop: lowest and highest number not included.
EC25 16 1 1  2.00% Swap: incorrect, leads to loop being only correct for 7 = j.
EC26 15 4 2 50.92 % Swap: incorrect, bounces i and j in incorrect order.
Calculation: wrong for n = 1.
EC27 14 5 13 89.52 % Loop: highest number not included, except when ¢ = j.
EC28 14 2 1 2.00% No output line when ¢ < j.
EC29 14 4 1 43.76 % Loop: highest number not included.
Swap: incorrect. (Write: bounces ¢ and j in incorrect order when 7 > j.)
EC30 12 2 1 2.00% Swap: incorrect (swaps when i < j), leads to incorrect answer when i # j.
EC31 11 5 1 43.80 % Swap: missing, leads to result 1. Loop: last element missing.
EC32 10 2 1 51.00 % Swap: incorrect, leads to i = j = maz(i, 7). (Write: bounces ”z ¢” if i > j.)
EC33 10 3 3 54.76 % Swap: missing, leads to last calculation result.
EC34 9 1 2 99.96 % Calculation: wrong for n = 1 (increment of sequence length incorrect for n = 1),
leads to result 2.
EC35 6 1 1 48.32 % Loop: incorrect, leads to result being one too low if maximum sequence length of
longest sequence is one higher than the next highest length.
EC36 5 2 1 99.92 % Calculation: wrong for (i,5) = (0,1) or (4,5) = (1,0) (program step 3 after 5), leads
to result 4.
Total 8148 2960 3828
We also see regions that appear to be the super- 256 different failure set patterns can be generated with
position of two different failure sets, for example, v) only 8 basic patterns found so far (and even more com-
seems to be the superposition of a) and h). This might binations are possible if we include ”varieties” of the
be the explanation for the large number of different basic faults).

equivalence classes found in the study. For example,



Figure 2: Failure sets for common equivalence classes.
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7 Analysis of the debugging process

We have seen that there are a number of basic faults
which can appear in a number of different ” varieties”
for the same underlying programming fault. We have
also seen that these basic faults appear to be superim-
posed on each other, i.e. an equivalence class consists
a combination of one or more ”basic” faults.

We might therefore expect the debugging process
to result in the removal of successive bugs and hence
there would be a transition from one equivalence class
to another with fewer basic faults. If this supposition
is correct, we would expect that:

o relatively few transition steps are needed before
the final ”correct” equivalence class is reached;

e few equivalence classes ar "reachable” from an-
other class (i.e., only the ones with one more or
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less basic fault).

At a more global level, it may be the case that
some faults are more difficult to eliminate than oth-
ers, so we might expect to see different proportions
of basic defects as debugging progresses. These issues
are examined in the sections below.

7.1 Transitions between the equivalence
classes

An analysis was performed of the transitions be-
tween equivalence classes. In Table 3 we show the
mean number of transition steps needed to arrive at
a correct program from a program in a given equiv-
alence class, and the basic faults contained in each
equivalence class.

An ”ideal” debugging process would eliminate a ba-
sic fault at each step, but in practice it can be seen that



there are more transitions than the number of faults
by a factor of 2 or 3. One possible cause of these extra
transitions might be correction-induced faults, where
a new fault is sometimes added to the set. However
our analysis indicates that the primary reason for the
additional transitions is that the next release has the
same equivalence class. The probable explanation for
that is that the Contest Host provides no debugging
information, i.e. it does not provide any information
about the test input values that caused the failure or
which element of the answer is incorrect. This could
result in the programmer making cosmetic changes
rather than addressing the actual problem. Table 3
also shows the probability of staying in the same class
for the different equivalence classes.

It can be seen that for some equivalence classes
there is a 100% probability of staying in the same
class, while in other cases there is only a 4% percent
probability. However there is no obvious relationship
between the faults present in the class and the transi-
tion probability.

A full transition matrix between equivalence classes
is given in the final table at the end of the paper. From
this table it is clear that that authors do not insert
faults of an entirely different category. e.g. there are
no transitions from EC07 to EC06 where the faults
are disjoint. It is also rare to have a transition from a
program containing one fault to a program with two
faults. When analysing the few cases where this hap-
pens, it appears to be that the failure set of the first
fault ”covers” the failure sets of two other faults.

The diagonal is a dominant feature of the transition
table. These are transitions within the same equiva-
lence class.

7.2 Reliability of successive releases

It is difficult to talk about the reliability of a pro-
gram version without defining its operational profile.
Take for example, the program failure set in Figure
5a). If the input profile that was restricted to the
top triangular portion the program would always fail,
while an input profile that remained in the bottom tri-
angle would never fail. However on average, we would
expect reliability to be better when the failure sets be-
come smaller, and if we assume that each input value
is equally likely, the probability of failure is propor-
tional to the size of the failure set.

In Figure 3, we show the distribution of the reli-
ability (assuming each input value is equally likely).
for successive program ”releases” by the authors. The
lowest line is the distribution of reliabilities of the first

Table 3: Probability of staying in the same equiva-
lence class for a program in a given equivalence class
and mean number of steps to final submission. (#Tr.:
Number of transitions.)

#Tr. Total Mean

to #Tr. % #Steps
same from within to

EC EC EC EC correct
EC01 702 1602 44 % 2.9
EC02 324 854 38 % 2.0
EC03 174 389 45 % 2.8
EC04 96 278 35 % 2.6
EC05 117 265 44 % 3.5
EC06 80 182 44 % 2.6
ECO07 32 73 44 % 2.0
EC08 28 72 39 % 3.5
EC09 14 60 23 % 4.2
EC10 24 62 39 % 2.4
EC11 20 38 53 % 2.4
EC12 19 36 53 % 2.5
EC13 22 33 67 % 6.0
EC14 4 35 11 % 3.6
EC15 21 35 60 % 4.0
EC16 11 32 34 % 1.6
EC17 12 31 39 % 4.1
EC18 1 24 4 % 4.2
EC19 6 23 26 % 3.2
EC20 6 20 30 % 2.0
EC21 11 19 58 % 3.0
EC22 11 12 92 % 1.2
EC23 6 17 35 % 4.3
EC24 5 17 29 % 2.4
EC25 4 15 27 % 1.6
EC26 3 13 23 % 1.9
EC27 1 1 100 % 0.1
EC28 5 14 36 % 2.1
EC29 1 14 7% 4.6
EC30 2 12 17 % 1.9
EC31 3 11 27 % 5.0
EC32 2 9 22 % 1.2
EC33 3 7 43 % 1.0
EC34 2 7 29 % 1.1
EC35 1 6 17 % 1.8
EC36 2 4 50 % 1.2

submissions. The second lowest is the second submis-
sion, and so forth. It can be seen that:

e the reliability of the program versions improves
with successive attempts;

e the gain in reliability per release is decreasing.

This is consistent with the reliability growth be-
haviour that might be expected if the faults present
in a program are removed in successive releases, and
the faults with the highest failure rates are removed
first.



Figure 3: Reliability profile (successive releases).
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We also see that there are significant ”steps” at cer-
tain reliability values, for example a significant frac-
tion of the programs have reliabilities clustered around
0.5. This is caused by one of the basic faults—a miss-
ing or incorrect swap (the triangular failure set shown
in Figure 2a)) which occupies 50% of the input space.
We also note that these steps in the distribution re-
mains similar relative to each other, suggesting that
there is little difference in the debugging of the differ-
ence basic faults within the programs. If for example,
the 50% triangle fault was easy to remove, the large
step at 50% would disappear after the first release,
but in fact all ”steps” seem to be removed at a similar
rate.

8 Effectiveness of diversity

Two of the most well known probability models in
this domain, are the Eckhardt and Lee model [3], and,
the Littlewood and Miller extended model [5]. Both
models assume that:

1. Failures of an individual program are determinis-
tic and a program version either fails or succeeds
for each input value z. The failure set of a pro-
gram 7 can be represented by a ”score function”
w(m, ) which produces a zero if the program suc-
ceeds for a given z or a one if it fails (see the
example in Figure 5).

2. There is randomness due to the development pro-
cess. This is represented as the random selection
of a program from the set of all possible program
versions II that can feasibly be developed and/or
envisaged. The probability that a particular ver-
sion 7, will be produced is P (7). This can be re-
lated the relative numbers of equivalence classes
in Table 2.

3. There is randomness due to the demands in op-
eration. This is represented by the (random) set
of all possible demands X (i.e. inputs and/or
states) that can possibly occur, together with the
probability of selection of a given input demand
z, P(x).

Using these model assumptions, the average prob-
ability of a program version failing on a given demand
is given by the difficulty function, 6(x) where:

6(z) = Y w(m,z)P(m) (1)

™

The average probability of failure on demand of a
randomly chosen single program version can be com-
puted using the difficulty function and the demand
profile,

E(pfd,) =) 6(2)P(x) 2)

The Eckhardt and Lee model assumes similar de-
velopment processes for A and B and hence identical
difficulty functions. So the average pfd for a pair of
diverse programs (assuming that only agreement on
the wrong answer is dangerous) would be:

E(pfdy) = ) 6(2)*P(z) 3)

If 6(z) is constant for all z (i.e. the difficulty func-
tion is ”flat”) then, the reliability improvement for a
diverse pair will (on average) satisfy the independence
assumption, i.e.:

E(pfd,) = E(pfd,)” (4)

However if the difficulty function is ”"bumpy”, it is
always the case that:

E(pfd,) > E(pfd,)’ (5)

If the difficulty surface is very ”spiky” the diverse
program versions tend to fail on the exactly the same
inputs (where the ”spikes” are). In this case, diversity
is likely to yield little benefit and pfd, could be close to
pfd,. If, however, there is a relatively "flat” difficulty
surface there is no a priori reason for program versions
to fail on the same inputs and hence pdfs should be
closer the value implied by the independence assump-
tion)

If the populations A and B differ (the Littlewood
and Miller model), the improvement can, in princi-
ple, be better that the independence assumption, i.e.
when the ”dips” in 64(z) coincide with the ”spikes”
in 8p(x), it is possible for the expected value of pfd,



to be less than that predicted by the independence
assumption.

At this stage however we have not used programs
that can be readily separated into different popula-
tions (e.g. by programming language) so our study
of effectiveness was confined to deriving a difficulty
function for the whole population.

This is fairly simple to derive, for each point in the
input space we add up the number of program version
that fail and divide by the total number of program
versions. The resultant difficulty surface 8(x) for the
”3n+1"-problem is shown below.

Figure 4: Difficulty function for the ”3n+1”-problem.

As the difficulty surface is the weighted average of
the failure sets of the individual equivalence classes, it
is not surprising that the surface is dominated by the
most frequently occurring failure set—the triangular
region of the "swap” fault.

To estimate the pfd using equations 2 and 3, we
need to specify the input profile P(z). Assuming that
all inputs are equally likely we can compute the ex-
pected pfd for a single version and a diverse pair:

Table 4: Expected pfd’s (from the difficulty function).

Parameter Initial Final
release release
pfd, 0.32 0.15
pfd, 0.024 0.026
pfd? (independent) 0.010 0.023
Ratio 2.4 1.13

This can be compared with another difficulty func-
tion study using a different problem from the same
archive [2]. The difficulty surface for the final release
versions are shown in Figure 4.

The equivalent pfd results for the second problem
were:

Figure 5: Difficulty function for the alternate problem.

Table 5: Expected pfd’s, from [2].

Parameter Initial Final
release release
pfd, 0.186 0.064
pfd, 0.0361 0.0042
pfd? (independent) 0.0347  0.0041
Ratio 1.04 1.02

It is notable that, in both problems, the dominant
failure set in the difficulty surface was a specification
problem. A specific sub-domain of the input space
(¢ > j in the first example and v < 0 in the second
example) was not handled in the correct way. This
resulted in a large failure set zone that was present in
many different program versions. The other notable
feature is that the expected pfd of a diverse pairs is
actually quite close to the independence assumption
in both examples.

9 Discussion
9.1 Relevance of results

In presenting these exploratory results it is impor-
tant to note any limitations in their applicability to
software engineering in general. There are a number
of issues involved in using programs from a contest
host site.

e disparities in programmer experience and exper-
tise;

o disparities in the size and complexity of the spec-
ifications and the programs;

e disparities in the software development process;



e bias in program submissions, e.g. multiple sub-
missions under different names or by submitting
programs produced collectively by multiple peo-
ple.

As there are no large-scale data sources that are
free from such bias, the only way forward is to take
account of the limitations and to be careful about
what observations can be generalised. In particular,
we have attempted to eliminate programmers who do
not appear to be competent (judged by the number of
submissions). We also know that at the other end of
the spectrum, there are some very professional authors
who participate in international time-limited compe-
titions under controlled conditions. We hope to get
more information on the backgrounds of authors for
subsequent analyses.

Despite these precautions it must be recognised
that both the specifications and the programs are
much smaller than those used in industrial scale soft-
ware. Also there is no control over the engineering pro-
cess used to develop individual releases. So the results
produced here a more typical of ”programming in the
small” rather than ”programming in the large” and
the faults might be similar to those present in a sin-
gle program module produced by a programmer prior
to official verification and validation. These caveats
apply to the discussions below.

9.2 Characterisation of faults

Most faults related to poor interpretation of the
specification: In particular common faults were re-
lated to:

o Not realising that the second input can be smaller
than first. This was not mentioned in the speci-
fication but the author should not assume other-
wise.

e Not realising that returned input values should
be in same order. This is explicitly mentioned in
the specification.

It was also notable that almost no faults were found
in the mathematical part of problem. Possibly because
the algorithm is "homogeneous”, i.e. the same algo-
rithm is used regardless of the input value. So if the
program works for the sample inputs it is likely work
for all inputs.

Most of the implementation faults were related to
well known programming ”slips”, e.g.

o first element of loop forgotten;

e last element of loop forgotten;
e first and last element of loop forgotten;
¢ initialisation of variable omitted.

In this respect the faults found in the study are
similar to those found in more typical software exam-
ples [1]. However they do lack ”large program” faults
like inconsistent procedure calls, inappropriate use of
functions, etc.

One interesting feature of this study is that faults
are not arbitrary-there are certain basic faults that
appear many times over in different versions. From
our exploratory analysis it seems that the majority
of equivalence classes are combinations of the basic
faults and the failure sets are a superposition of the
failure sets of the basic faults. This supports a com-
mon assumption in software engineering [7] that soft-
ware faults can be viewed as separate entities that can
be inserted or corrected individually.

9.3 The debugging process

As noted earlier, the debugging environment is
atypical because there is no diagnostic feedback to
help identify the error. The programmer does not
know of the test values used by the on-line judge re-
sulted in failure, and this information should help to
locate the cause. However it appears that this diffi-
culty did not result in the introduction of new faults,
it just delayed the removal of faults.

The delay in removal differs from a standard relia-
bility modelling assumption that defects are removed
once a failure occurs [6]. This situation could be due
to the lack of failure information, and it would be in-
teresting to see what impact additional test result in-
formation would have on the debugging process.

On the other hand, the study supports the common
assumptions that there are a specific set of faults in
the program and the debugging process removes these
faults one by one.

9.4 Effectiveness of diversity

The results obtained for the two problems are
rather surprising as they predict the reliability im-
provement could be close to the independence assump-
tion. This result is not supported by other experi-
ments on larger programs, particularly [4]. However
we must be careful not to over-interpret our results.
In both problems, the difficulty surface is dominated
by quite ”large” faults that are related to the spec-
ification, and one might question whether such large



faults would remain in a real software development. It
may be better to examine the difficulty surface that
would be obtained of we excluded all the large faults
(on the assumption that these would be removed by
the standard debugging process). On the other hand,
one might argue that we might expect a fault to oc-
cupy particular sub-domains of the input space, so
”flat difficulty functions over the sub-domain night be
the norm-even for large programs.

The current study did not attempt to identify dif-
ferent populations that could (potentially) lead to dif-
ferent difficulty surfaces and more effective diversity.
Furthermore, another issue we need to consider is that
the theories predict the reliability improvement on av-
erage. As we have seen in Figure 5, it is possible for
two program versions to have identical failure sets and
in this case diversity would be ineffective (although a
disparity would be detected for different ”varieties”
where wrong, but different, answers are produced). In
other cases, the failure sets could be disjoint or not
exist at all. So we need to look at the distribution of
possible reliability improvement for the range of equiv-
alence classes. We plan to look at these aspects of
diversity in later studies.

10 Conclusions

The analysis of programs submitted to the Val-
ladolid Programming Contest gives numerous oppor-
tunities for software engineering research. This paper
presents some exploratory findings related to:

e the types of faults that are introduced;
¢ the debugging process;
e the effectiveness of diversity.

The results tend to support some of the common
assumptions made in software engineering such as:

e 3 distinct set of faults;

e progressive removal of these faults during debug-
ging.

However the study also suggests that other assump-
tions such as:

e immediate detection and removal of faults;

e large variations in ”difficulty” for different input
values in diverse programs;

were not supported.

It must be emphasised however that the programs
used may not be typical of normal software engineer-
ing practice, and further studies are planned to ad-
dress some the limitations of the current study and to
investigate some the conjectures made in this paper.
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Table 6. Transitions from equivalence classes EC01 to EC32 to equivalence classes EC00 to EC32.
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