
The Variation of Software Survival Time for Di�erent Operational

Input Pro�les (or why you can wait a long time for a big bug to fail)

P. G. Bishop

Adelard, Coborn House, London, E3 2DA, England

Abstract

This paper provides experimental and theoretical ev-

idence for the existence of contiguous failure regions

in the program input space (`blob' defects). For real-

time systems where successive input values tend to be

similar, blob defects can have a major impact on the

software survival time because the failure probability is

not constant. For example, with a `random walk' input

sequence, the probability of failure decreases as the time

from the last failure increases. It is shown that the key

factors a�ecting the survival time are the input `trajec-

tory', the rate of change of the input values and the

`surface area' of the defect (rather than its volume).

1 Introduction

This paper is an extension of earlier experimental

studies on the failure characteristics of some known

software defects [1, 2, 3]. The results of these stud-

ies cast doubt on the general validity of an assumption

of constant probability of failure for software. In con-

ventional reliability theory, it is often assumed that an

item fails with a �xed probability per unit time (�), and

the mean interval between failure is 1=�. When this as-

sumption was tested experimentally, it was found that

the failure probability was not constant for some in-

put distributions. This variability could be explained

by an assumption of defects which occupy contiguous

regions of the input space (`blobs'). The paper begins

by summarizing some of the relevant reliability theory

together with the main results of the earlier study. The

remainder of the paper presents evidence to back up the

assumption of `blob' defects and presents a more de-

tailed analysis of e�ect of `blobs' on failure behaviour.

2 Some Relevant Reliability Theory

Software reliability theory di�ers from conventional

theory because it operates in discrete rather than con-

tinuous time [4]. Most software operates on an input-

process-output cycle, so failures are only meaningful in

terms of software execution cycles rather than absolute

time. In this paper the `time unit' is deemed to be one

execution cycle.

In this study we are primarily concerned with em-

bedded operational software where repair is infeasible

in the short term or where transient failures (`glitches')

occur which are hard to diagnose. In these circum-

stances, software operation is a sequence of `successes'

and `failures' for successive execution cycles. This se-

quence can be analysed to derive:

� the mean probability of failure per

execution

�S(n) the instantaneous probability of failure

after n successful executions

�f (n) the instantaneous probability of failure

after n failed executions
Note that survival intervals are measured from the �rst

successful execution cycle, which could be the �rst exe-

cution of the program, or the �rst successful execution

after a succession of failure cycles.

The calculation of � is simply the ratio of failure

cycles to total cycles. �S(n) is calculated by deriving

the probability density function P (NS � n) where NS

represents the survival interval in program execution

cycles. The instantaneous failure probability after n

successful cycles is computed as:

�S(n) =
P (NS = n)

P (NS � n)

This hazard function is simply the ratio of periods

that survive exactly n cycles (i.e. fail on cycle n + 1)

against total number of periods that reach n cycles. �f
is calculated in a similar way.

The above analysis applies whether the failure rate

is constant or �xed. Of course if the software failure

rate is constant then, for all n > 0:

� = �S (n) = �f (n)

While direct measurements of �S are feasible, it is
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often di�cult to get su�cient accuracy. As an alterna-

tive, the distribution P (NS � n) can be compared with

the distribution expected for the constant failure rate

assumption. If we assume that the probability of fail-

ure per execution of the program is a constant, �0, then

survival interval probability follows a Bernoulli distri-

bution, where the probability of observing a survival

interval of n cycles or more is:

P (NS > n) = (1� �0)
n

and the probability of surviving exactly n cycles is:

P (NS = n) = �0(1� �0)
n

3 Summary of Earlier Work

The earlier study made use of the known faults de-

tected in two Fortran programs (TRIPC and TRIPV)

produced in the PODS project, an experiment on soft-

ware diversity [1]. These programs implemented a sim-

ple, but non-trivial, reactor trip function speci�ed by

the UK Atomic Energy Authority. The failure rate

behaviour of the various faults was examined for two

types of random input data.

The �rst set of tests used totally arbitrary data; in-

put values were randomly selected from a uniform dis-

tribution for each program input. The observed sur-

vival time distribution matched an assumption of con-

stant failure rate to 95% con�dence. The failure rate

for sequences of failures (�f (n)) were also analysed.

For around half the faults, there was a 95% con�dence

�t to an assumption of constant failure rate. However

the remaining faults exhibited a variable �f (n). This

was explained by the fact that these particular faults

damaged the `internal state' of the program (variables

used from one cycle to the next).

The second set of tests attempted to be more re-

alistic. In most real-time applications (and certainly

for this particular application) the input values do not

change greatly from execution cycle to the next. We

chose to model this by performing a `randomwalk' over

each set of input values. On each execution, all the in-

put parameters were altered by a random `step' which

was a small percentage of the input range. While �

was very similar to the uniform random case, the sur-

vival interval density distribution could no longer be

expressed as a Bernoulli distribution. However the dis-

tribution was found to be a good �t to a power law:

P (NS = n) = A:n�k

where 1:2 < k < 1:8 for the di�erent faults exam-

ined. Translated back in terms of �S(n) this meant that

chance of failure decreased rapidly as n increased. At

�rst this was extremely puzzling, but thinking back to

the idea of a `defect' in the program domain a credible

explanation was obtained. Evidence existed to support

the theory that a program fault creates a `blob'-shaped

defect in the state space (i.e. the individual points of

the defects are close to each other) [5, 6, 7]. If this

were true for the PODS defects, then it was clear that

the probability of failure would no longer be constant.

Immediately after recovery from a failure, the program

operating point is close to a defect. As the number

of steps without failure increases, the mean distance

from the defect is increased so it is plausible that the

probability of failure for subsequent steps is reduced.

To get a more analytic explanation of this phe-

nomenon we turned to the theory of coin tossing [8].

Coin tossing is analogous to a simple linear model of a

program state space where positive and negative steps

replace heads and tails, and the cumulative winnings

represent the distance from the defect. Using this the-

ory, the probability of returning to the defect after n

failure-free steps is:

P (NS = n) = A:n�1:5

which was close to the observed behaviour. However it

is clear that this model is not a complete explanation

because it is easy to show that the mean survival in-

terval will be in�nite after an in�nite number of steps.

This arises because the simple model assumes an in�-

nite linear program state space. In practice the pro-

gram operating point is constrained to move within a

�nite input range. If a program survives long enough to

traverse the complete input range, the mean distance

from the defect should tend to a �xed value. Thus the

probability of failure per execution is likely to become

constant. For a randomwalk, the mean distance moved

from the start point is s
p
n where n is the number of

steps and s is the mean step length. Thus the complete

range r should be traversed when:

n = (r=s)2

As an example, for a mean step length of 10%, the full

range should be traversed in 100 steps. Experiments to

check this hypotheses con�rmed the fact �S(n) stabi-

lized after this point. However it was noted that �S(n)

was much less than �.

It was clear that further work was needed to both

to justify the hypothesis that the software defects were

indeed `blobs' in the input space of these programs, and

to investigate the impact of blobs on failure behaviour

in general. The remainder of the paper describes an

investigation into these aspects.
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4 Experimental Justi�cation of Blob

Defects

The TRIPC and TRIPV test harnesses were both

adapted to plot out the software failure regions in 15

two-dimensional slices of the input space around a de-

tected failure point. The experiment showed that all

the defects in the TRIPC and TRIPV programs oc-

cupied contiguous regions of the input space. Some

two-dimensional views of typical faults are shown in

�gures 1 to 3. It can be seen that the term `blob' is

not particularly appropriate since the shapes are often

angular and elongated. An analysis was made to estab-

lish the factors a�ecting the shapes of the faults and a

number of factors were identi�ed.

4.1 Input Variable Dependency

One factor which emerged clearly from this analysis

was that a bug which has a quite low overall failure

rate can look quite large when viewed as a series of

two-dimensional slices through the input space. For

example TRIPV fault 9 (�gure 1) has a failure rate

of 10�4 per cycle under uniform random test condi-

tions, but occupies a signi�cant fraction of the input

range in some dimensions. This occurs when the fault

is only dependent on one or two of the input variables.

The values of the remaining variables do not contribute

to the failure. Since the one or two key variables are

kept constant at the point of failure when plotting the

remaining two-dimensional slices, these plots are com-

pletely black (i.e. a faulty result is returned whatever

input values are selected). Hence it is actually the plots

containing the smallest defect regions which tend to

contain the variables most likely to activate the bug.

Where the faulty computed output values only de-

pend on a single input variable, the two dimensional

slice is either completely �lled or forms rectangular

shapes spanning the complete input range of the other

(non-contributing) variable. TRIPV Fault 9 contains

examples of such rectangular and totally �lled slices.

4.2 Dependency on Combined Input Vari-
ables

For other faults, the faulty computed output vari-

able(s) depend on a higher proportion of the input vari-

ables combined according to some equation. For these

faults, the failure regions tended to be more similar in

size and skewed with respect to the axes. TRIPC Fault

10 is an example of this (see �gure 2).

This particular fault is readily explained since the

main analogue input variables are combined using lin-

ear and non-linear equations to compute a reactor

power (see �gure 4). If contour lines of constant re-

actor power are drawn through the input space, they

are skewed with respect to all the axes which a�ect

the calculation. Any faults within or `downstream' of

this calculation tend to have edges aligned with these

contours.

4.3 E�ect of Error Masking

One notable feature of the analysis was the e�ect

of error masking. This e�ect has been noted in earlier

studies [3]. In essence, quite large internal errors can

result in much smaller external failures because some

downstream program logic corrects the error. Simple

examples of this are:

� the OR of several binary values { where a correct

`1' value overrides any number of faulty inputs.

� Range-clipping { where an analogue value is

clipped within a maximum and minimum range.

Faulty internal values can be clipped to the cor-

rect external value.

Both of these error-masking functions are present

within the PODS reactor trip example (see �gure 4).

One example of error-masking can be seen in TRIPC

Fault 19 (�gure 3). This causes a failure in the out-of-

range signal (RE) . The RE signal is formed from the

OR of several out-of-range indications. Whenever any

correct out-of-range indication is generated, it masks

the faulty input to the OR logic. This causes straight

portions to be sliced o� the failure region close to the

upper and lower boundaries of the input dimensions.

5 Theoretical Justi�cation for Blob De-

fects

All 30 defects analysed in the two diverse programs

were `blobs'; similar faults have also been observed by

other researchers [5, 6, 7], so there is strong experi-

mental evidence on the existence of blob defects. Ad-

mittedly, the PODS application is fairly simple and

many of the defects are quite large faults which were

detected during development and are therefore atypi-

cal the faults remaining in operational software. This

section presents a supporting theoretical justi�cation

for the existence of blob defects. Furthermore I will

argue that the general shape of such defects should be

predictable.

Any computation can be regarded as the composi-

tion of a set of functions. The data 
ow diagram for

the PODS application (�gure 4) illustrates this. For

a function computing analogue values, it is probable
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that failures occur over contiguous ranges of input val-

ues. Typical reasons for this might be:

� Incorrect positioning of the boundary between two

types of calculation.

� Missing boundaries.

� Incorrect table values.

� Inadequate calculation precision (e.g. for small val-

ues).

� Algorithm approximations.

Provided the functions `upstream' and `downstream'

of the faulty function are smooth continuous functions,

the observed failure regions will also be contiguous.

More generally, each function is a mapping between a

domain and a range, for example the `program' f maps

the input domains A and B to the output domain P ,

i.e:

(A� B)
f! P

This might be implemented as the following compo-

sition of functions, shown schematically below:

A
f1! X

� f3! Z
f4! P

B
f2! Y

If we replace f1 by a faulty function f 01 there will

be a failure subset Af � A for which incorrect values

in X will be generated. It might be assumed that the

observed failure region F in the program input space

will be:

F = Af �B

However this presupposes that all the values in Af �B
will generate incorrect �nal values. This can be the case

when the downstream functions all have one-to-one

mappings. However most practical programs condense

information rather than expand it, and this implies

that many-to-one mapping functions are more likely to

be used. In this case `error masking' can occur which

has the of cutting o� portions of the original failure re-

gion. A simple example of this is where f3 implements

the MAX function. Whenever the y value exceeds the

x value, the correct value of z is computed. More for-

mally, the other functions in the program constitute a

`failure mask'MAB � A�B and the observable failure

region is:

Fobs = (Af � B) \MAB

A many-to-one mapping function `upstream' of an

error region has a di�erent e�ect. For example, if there

was an erroneous single point in Z, this would `project

back' through the inverse mapping function f�1
3 to

many points in the domain X � Y . If the function is

continuous, the `projected back' single point becomes a

contour in the domain X � Y . Take the simple exam-

ple where f3 implements the `+' function, the back-

projected contour satis�es the equation x + y = z0
where z0 is the erroneous value. Shifting the single

point to an adjacent value shifts the contour in a di-

rection at right-angles to the contour. So a contiguous

range of error values in Z projects to a solid diago-

nal band in X � Y . In general, if the back-projection

space has a large number of extra dimensions compared

to the error, the contour becomes a hypersurface. A

contiguous range of values in the error domain gener-

ates a hypersurface of �nite thickness which is probably

skewed with respect to dimensions of the input space.

Any non-linearity in the upstream functions, f1 and

f2, will further distort the hypersurface when it is pro-

jected back to the input space A�B. The region is also
likely to be sliced up by error masking in downstream

computations (e.g. f4). So the overall failure region Zf
when observed at the input space would be:

Fobs = (f1 � f2)
�1 f�1

3 (Zf \MZ)

To some extent therefore, it should be possible to pre-

dict the shape of a defect (if not the thickness normal

to the surface). The shape should align with contours

of equal value for the function upstream from the fault.

In addition we should be able to predict the boundaries

of any masking functions which can truncate this error

region.

The di�culty of predicting the actual defect shape

increases with the complexity of the application. Com-

plex functions feeding into further complex functions

can lead to very distorted contours of equal output

value. If the upstream mapping functions are many-

to-one and discontinuous or non-monotonic, a contigu-

ous error range for a faulty internal function may map

backwards into multiple and entirely distinct regions in

the input space (i.e. there can be many `blobs' for one

software defect). Thus a simple internal error region

can be distorted and replicated when its image is pro-

jected back on to the input space (like viewing a simple

object through a multi-faceted distorting lens).

The overall conclusion is that the shape of the fault

depends more on where the fault is located (in a func-

tional sense) within the program. Thus the likely defect

shape at a particular program point might also be de-

duced by `seeding' an arti�cial defect at that point. In

addition it is reasonable to expect a failure region to:

� be a hypersurface of �nite thickness with some

edges aligned with contours of equal output value

for the function upstream of the error.

� exhibit sharp angles where the failure regions have

been truncated by down-stream masking func-

tions.
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6 Impact of Blobs on Software Failure

Having demonstrated that `blob' defects are likely to

occur in software, the impact of this observation was

explored in greater detail. It is clear that key factors

in the failure behaviour of the software will be:

� the input distribution

� the `trajectory' through the input space

� the actual shape of the blobs.

6.1 E�ect of the Input Distribution

It is well-known that mean failure rate � will be

a�ected by the distribution of input values. Speci�c

input values are either faulty or correct, so altering the

activation probability for an input value will clearly

change the overall failure rate. However the existence

of `blobs' may well result in a greater sensitivity to

changes in the input distribution. The distribution of

operational input values will cover a subset of the input

space which may or may not coincide with the blobs in

the input failure region. If the operational distribution

is close to blob, even a small shift in the distribution

could alter the proportion of the failure region that is

covered hence changing � very signi�cantly.

6.2 E�ect of Trajectories

For a given input distribution, it is possible to have

many di�erent types of trajectory, from totally ran-

dom to entirely deterministic. For a trajectory that

proceeds in small `steps' through the input space, the

software survival time can be regarded as the `tran-

sit time' between the blobs. For a given trajectory of

length d, executed in steps of mean length s, the mean

transit time (or mean time of continuous success) will

be

tS = d=s

Note that d can be very large since it is possible to

traverse the input range many times before hitting the

fault. In practice there will be a distribution of dif-

ferent trajectories of di�erent lengths, but for a �xed

distribution of trajectory lengths, it is clear that:

tS / 1=s

A similar argument can be applied to the times of con-

tinuous failure, tF , i.e.

tF / 1=s

This implies that the mean time for continuous suc-

cess, tS , is actually proportional to the rate of change

of the input variables. Thus if the `external world' con-

ditions change more rapidly, the interval between fail-

ures will decrease. One possible interpretation of this

phenomenon is that software is more likely to fail just

when you need it, i.e. when the external conditions are

changing rapidly.

Note that this apparently counter-intuitive be-

haviour is consistent with the idea of a mean rate of fail-

ure per execution cycle, �, that stays the same. From

the de�nitions of tS and tF it is clear that:

� = tF =(tS + tF )

because this represents the ratio of the failure time to

the total time. Since tS and tF maintain a �xed ratio,

� remains unchanged as s is varied.

6.3 E�ect of Defect Shape

For a deterministic or semi-deterministic trajectory,

the volume of a defect does not have such a dominant

e�ect on the survival time; it is actually the e�ective

cross-sectional area of the defect that is most impor-

tant. The e�ective cross-sectional area can vary de-

pending the direction of the trajectory. For example,

a pencil-shaped defect has very di�erent cross-section

when viewed end-on or sideways. The distribution of

trajectories across the surface also a�ects the e�ective

cross-section. For a random walk motion, the whole

surface area of the defect contributes to the e�ective

cross-sectional area, since the trajectories are even dis-

tributed in all directions. With such evenly distributed

trajectories, the e�ective cross-sectional area is directly

related to the surface area of the defect. However for

any given set of trajectories, some e�ective mean cross-

sectional area, A0 should exist, so:

tS / 1=A0s

Since a trajectory is traversed by series of steps through

the input space, it is possible to `step over' a blob pro-

vided the step is large enough. This will occur if the

width of the blob, wi, is smaller than the step, si in

any dimension of the input space i. The relationship

derived above has to be quali�ed:

tS / 1=A0s; si < wi for all i

If the mean step length si becomes greater than wi,

the blob becomes `semi-transparent'. In the limit, the

mean transit time (tF ) through the defect will be one

execution cycle. Hence from the earlier equation:

tS � (1� �)=�; si >> wi for any i
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6.4 Survival Interval Distribution

The previous analysis applies regardless of the spe-

ci�c trajectories employed. Furthermore, only the

mean success interval (tS) has been examined. Now

the impact of trajectories and blobs on the distribu-

tion of survival intervals (P (NS � n)) will be exam-

ined. The key item of interest is whether the very fact

of survival can provide any further information about

the chance of further survival. We have chosen the

measure MTCS(n), which is the mean time for con-

tinued survival. This measure takes the mean of all

survival periods for which NS � n and subtracts the

prior survival time (n�1). This de�nition implies that

tS =MTCS(1).

For uniform random input data, the prior survival

time is irrelevant. The probability of failure remains

constant, so for all n:

MTCS(n) = tS =
1� �

�

For a deterministic trajectory, the probability of failure

increases as the number of steps increases, so assuming

an exponentially distributed set of trajectory lengths,

one would expect a relationship of the form:

MTCS(n) = tSe
�K0(n�1)

Finally in the `random walk' case, the fact of survival

after a failure increases the chance of being further

away from a defect, so the probability of failure de-

creases with the number of cycles. However, when the

number of cycles is su�cient to span the complete in-

put range (i.e. nmax > 1=s2i ) in all dimensions, there

is no possibility of moving further from the defect, so

the distribution of any surviving operating points in

input space becomes stationary, resulting in a constant

probability of failure.

The very fact of survival tells us that the program

operating point is outside the blob. After a sequence

of successes, failure is only possible when the program

operating point lies within a small `skin' with a thick-

ness of one step si around the blob. Assuming that the

defect lies in an unit input space, the instantaneous

failure probability is:

�S(nmax) /
X

i=1;k

�iAisi; nmax >> 1=s2i

where � is the probability of the program operating

point lying within the `skin', k is the number of dimen-

sions, and Ai is the surface area of the defect normal

to dimension i.

With a stationary input value distribution, � is con-

stant. However the actual value of � varies with the

step size. A simulation to derive the stationary distri-

bution for di�erent step lengths showed there was an

approximate relationship of:

� / s

for the density of program operating points within the

`skin'. Assuming the step length is identical in all di-

mensions, we obtain the approximate relationship:

�S(nmax) / As2

where A is the total surface area of the defect. It follows

that, approximately:

MTCS(nmax) /
1

As2

7 Simulation Study

The results of the above analysis are quite a surpris-

ing; for uniform random input sequences, it is volume

of the defect that matters, but for other types of in-

put trajectory the surface area that a�ects the survival

time. In addition the rate of change of input data af-

fects the survival time. So very long survival periods

are possible even with very large faults. This is con-

sistent with the experimental observations made in the

earlier random walk study.

To check the predictions made by this analysis, a

series of random walk simulations were made using n-

dimensional defects for di�erent values of n. The input

space was of unit length in each dimension, and the

defect was located at the centre of the unit space with

an identical length in each dimension. The program

operating point started at the defect boundary, and the

failure sequences were recorded and analysed to obtain

MTCS(n) and MTCF (n).

Figure 5 shows the distribution ofMTCS(n) of a 0.1

volume linear defect for di�erent step lengths. The very

large 0.3 length step approximates to a uniform random

distribution andMTCS(n) remains virtually constant.

For steps smaller than 0.1 (the width of the defect), it

can be seen that MTCS(1) increases as 1=s with the

step length and MTCS(n) rises asymptotically to a

value which is approximately proportional to 1=s2.

Figure 6 plots the distribution of MTCS(n) at a

�xed step length, for defects with the same volume but

di�erent dimensions (and hence surface area). It can

be seen thatMTCS(1) can di�er by an order of magni-

tude for di�erently shaped defects. This ratio remains

roughly the same for all values of n, which would be
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expected if MTCS(n) was proportional to the surface

area.

Figure 7 plots MTCS(nmax) against surface area

for di�erently shaped defects. It can be seen that

MTCS(nmax) for di�erently shaped defects with the

same surface area is roughly the same. The relation-

ship is probably not exact because higher order defects

have quite large linear dimensions. For example, a four-

dimensional defect with a volume of 10�2, has linear

dimensions of 0.31. This `squeezes' the available space

(making the e�ective step size bigger). This `squeeze

e�ect' is less signi�cant for smaller surface areas and

better agreement can be seen. It can also be seen that

MTCS(nmax) is approximately inversely related to the

surface area of the defect. Again the `squeeze e�ect' for

large surfaces, together with di�erent stationary dis-

tributions at the `corners' of higher order defects are

likely to cause deviations from the simple inverse rela-

tionship.

8 Discussion

It is clear from the analysis and simulation results

that `blobs', combined with correlated input sequences,

can have a dramatic e�ect on the survival character-

istics of software. As an example, in one simulation

run using a maximum step of 3% per cycle and a de-

fect occupying 10% of the input space, that the mean

time for continued survival at �rst successful execution,

MTCS(1), was over 100 execution cycles. After a sur-

vival period of 100 cycles (i.e. n=100) MTCS(n) rose

to more than 1000 execution cycles, and the asymp-

totic value of MTCS(n) was over 5000 execution cy-

cles. The results would be even more pronounced with

smaller step sizes.

Assuming the overall results are valid there are a

number of practical implications to what, to date, has

just been a theoretical exercise. With the blob model,

failures are likely to come in `bursts' interspersed by

long periods without failure. During a failure, restart-

ing the software will have little e�ect if the input con-

ditions are similar, the system could be unavailable for

far longer periods than might be expected.

If the input conditions change more rapidly, the in-

tervals of continuous success or failure shorten. This

could have unfortunate consequences. Given that the

software is working successfully (which should be the

norm) the time to failure will be long when conditions

are stable (e.g. 
ying straight and level), and shorten

just when you need them (e.g. aborting a landing, etc).

On the other hand, the same property could be use-

ful for �nal system and reliability testing. For some

real-time systems a few execution failures are su�cient

to cause a failure of the entire system (e.g. a dynami-

cally unstable aircraft). In this case the actual length

of the failure `burst' is irrelevant, but the length of the

survival time is of great relevance (especially to the pi-

lot). In these circumstances, it may be legitimate to ar-

gue that system testing using input data with far larger

steps than normal (up the credible limit for blob size)

is a form of accelerated testing. Time has e�ectively

been speeded up by the use of larger steps. Thus the

survival time estimate obtained in accelerated testing

can be `scaled up' in inverse proportion to the step size

to gain an estimate for the mean survival time under

the expected operational conditions.

Some reliability estimation methods [9, 10, 11] as-

sume a constant failure rate over time for any given set

of faults and input distribution, This study indicates

the failure rate will vary, so current reliability estima-

tion methods may need to be modi�ed to take account

of the e�ect of `blob's.

The shape of blobs may be relevant to software di-

versity. Previous theoretical work [12, 13] has shown

that diverse programs will exhibit correlated failures if

some input values are more `error prone' than others.

The analysis of blobs shows that that similar internal

ranges of error may back-project to cover very di�erent

amounts of the input space, so some portions of input

space are more error-prone. Thus a priori predictions

of `error proneness' and failure correlation should be

possible.

9 Summary and Conclusions

This study has shown that:

� The hypothesized `blob' defects were present in the

PODS application programs.

� On theoretical grounds, such blobs are likely to ex-

ist in any program and, to some extent, the general

shape of the fault can be predicted from the pro-

gram function and the location of the fault within

the program.

� The existence of `blob' defects implies that a con-

stant failure rate assumption is not justi�able,

especially for when successive input values are

strongly correlated (as they are in many real-time

systems).

� By de�nition, the mean times for continuous suc-

cess and failure (tS and tF ) maintain a �xed ratio

7



for a given mean failure rate. However the exis-

tence of `blob' defects combined with correlated in-

put sequences (trajectories) can lead to some sur-

prising results:

{ For small enough trajectory steps, tS is in-

versely related to the cross-sectional area of

the `blob' and the step length.

{ For random walk sequences, if a program sur-

vives n cycles, the mean continued survival

time,MTCS(n), increases as n increases. In

the limit, for large n, MTCS(n) tends to an

asymptotic value which is inversely propor-

tional to the blob surface area and the square

of the step length.

{ For deterministic trajectories MTCS(n) de-

creases with increased survival periods.

If these results are generally valid, it has some in-

teresting implications for the likely failure behaviour of

software-based systems. In particular:

1. Failures are likely to come in `bursts' interspersed

by long periods without failure.

2. Given that the software is operating successfully,

the chance of continued operation is greatly im-

proved if there are only small changes in input

conditions (e.g. 
ying straight and level in an air-

craft).

3. Conversely failures become more likely if there

are major changes in the external conditions (e.g.

take-o�, landing, evasive action).

4. It may be possible to justify `accelerated testing'

using large rates of change, where the measured

survival time can be scaled in proportion to the

maximum rate of change expected in normal op-

eration.

5. Software reliability theory may need to be modi-

�ed to take account of the e�ects of `blobs'.
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Fig. 1   TRIPV Defect 9  (2-d Slices through the Failure Region) 

Fig. 2   TRIPC Defect 10  (2-d Slices through the Failure Region)

Fig. 3   TRIPC Defect 19  (2-d Slices through the Failure Region)
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