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Abstract. This paper presents a model of diverse programs that assumes there 
are a common set of potential software faults that are more or less likely to exist 
in a specific program version. Testing is modeled as a specific ordering of the 
removal of faults from each program version. Different models of testing are 
examined where common and diverse test strategies are used for the diverse 
program versions. Under certain assumptions, theory suggests that a common 
test strategy could leave the proportion of common faults unchanged, while di-
verse test strategies are likely to reduce the proportion of common faults. A re-
view of the available empirical evidence gives some support to the assumptions 
made in the fault-based model. We also consider how the proportion of com-
mon faults can be related to the expected reliability improvement.  
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1 Introduction  

When diverse programs are developed, different software versions are developed and 
debugged by independent teams. Diversity seeking decisions (DSDs) can be used 
both in the development approach (languages, software design, etc.) and in the verifi-
cation and testing used to debug the software. This paper focuses primarily on the 
impact of using similar or diverse test strategies.  

The impact that testing has on single and diverse programs has been examined be-
fore [5, 7] but those models were based on the standard “difficulty function” ap-
proach, and evaluated testing strategies in terms of their impact on the probability of 
failure on demand (pfd). This paper takes a related but different approach to assessing 
the impact of different test strategies where the model is expressed in terms of a set of 
“characteristic faults” that might be introduced into the software. The diversity of the 
program versions is modeled by the proportion of faults that are common between the 
versions. Test strategies are modeled by different orderings of bug removal in the two 
versions and the impact of different test strategies on program diversity are examined. 
The effectiveness of alternative test strategies in reducing the common faults propor-
tion is modeled, and we discuss how the common fault proportion can be related to 
the expected improvement in reliability.  



 

 

2 The Diverse Debug Model 

Versions are developed and debugged by independent teams, and different approaches 
can be taken by both teams (whether by accident or design). So in general we need to 
consider the: 

• Likelihood of inclusion of faults in development; 
• Likelihood of removal by testing. 

In this model we assume that: 

1. There are “characteristic program faults”, i.e. different developers can make identi-
cal mistakes. There is a finite pool of N possible faults available for selection; 

2. Faults from this pool are independently selected by the two development teams, i.e. 
a given fault, i, is selected with probability s(i) by both development teams; 

3. The test strategies examined are equally effective at removing faults, i.e. remove 
the same proportion f of the faults present in the diverse programs. 

2.1 Fault Inclusion Model 

The fault selection probability s(i) is assumed to be the same for both teams, so the 
probability that fault i is common to versions A and B is: 

 2)()( isiP B =A
 

This is similar to the Eckhardt and Lee difficulty function model [3] for modeling 
common mode failure where there is a probability that a given input point is faulty. 
The fault selection model could perhaps be generalized to have different selection 
probabilities for A and B (similar to the Littlewood and Miller difficulty model [4]), 
i.e.:  

 )()()( isisiP BAAB =  

However an assumption of common s(i) values for both versions is the worst case, 
and will be taken to hold in the remainder of this paper. 

If we now consider the whole set of N characteristic faults where i = 1…N, the 
mean number of single version faults is: 
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The mean number of common faults is: 
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The mean proportion of common faults is: 
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2.2 Modeling Fault Removal 

Testing changes the existence probability of the characteristic faults. We can model 
the impact of diverse testing by two test reduction probabilities, tA(i) and tB(i). The 
test reduction probability tA(i) is the probability that fault i will be removed after ap-
plying the test strategy used for version A. So the expected number of faults remain-
ing in a program version is: 

 ∑=′ )()( itisN AA ,      ∑=′ )()( itisN BB  (2) 

The number of faults remaining can differ for versions A and B, as different test 
strategies may be deployed by the two teams, but we have made an assumption (see 
assumption 3) that the teams will choose equally effective test strategies, where there 
is similar reduction f in the proportion of faults in both versions, i.e.: 

 BABA fNfNNN ==′=′  (3) 

So after testing, the expected proportion of common faults, β ′, is: 
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We can use this equation to model the impact of different test strategies by assign-
ing different probability distributions to tA(i), tB(i). 

3 Modeling Different Test Strategies 

We can use the model to examine combinations of some extreme test strategies for 
the two versions, namely: 

• Random removal, where faults are randomly removed from each version; 
• Strictly ordered removal, with the same removal sequence in both versions; 
• Strictly ordered removal with a sequence that depends on selection probability.  



 

 

These test strategies may not necessarily be realistic, but they can help identify the 
best and worst cases achievable by different test strategies. 

3.1 Random Removal Test Strategy 

In the random removal strategy we assume that, for all faults 1...N: 

 fitit BA == )()(   

From equation (2), it follows that:  
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So it follows the fault reduction factor is also f. From equation (4): 
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From the original definition of β in equation (1): 

ββ f=′  

As a result, the proportion of common faults decreases as the number of residual 
faults decreases, i.e.: 

 0,0 →→′ fβ  

3.2 Ordered Removal Strategy (with Independence) 

In an ordered removal test strategy all faults will be removed in a specific order in 
both versions. This would, for example, occur if both program versions were tested 
with a common test set. Without loss of generality we can assume that the removal 
order runs from N down to 1. With some fraction f of the N potential faults remaining: 
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If we consider the case where the test effectiveness probability of defect t(i) is in-
dependent of the defect inclusion probability s(i), then: 
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Hence with exactly the same order of removal of common faults in the diverse pro-
grams, we expect the proportion of common defects to remain constant (on average) 
as testing proceeds, i.e.: 

 0, →≈′ fββ  

3.3 Ordered Plus Random Removal Strategies (with Independence) 

In this scenario, one team follows a random removal strategy and the other team uses 
an ordered removal strategy and we assume the removal order is independent of the 
selection probability. Both tests reduce the number of faults by the same fraction f so 
only faults j= 1… fN remain in one version and all faults in the other version have a 
survival probability f. It follows that the proportion of common faults after testing is: 
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For this combination of test strategies, it follows that: 

 ββ f≈′  

And in the limit: 

 0,0 →→′ fβ  

3.4 Ordering Dependent on Inclusion Probability 

If the defects are removed in sequence from j=N  to j= 1 and the removal order is 
strictly dependent on the inclusion probability then:  
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So rare faults will be detected and removed first and faults that occur frequently in 
software will be removed last. With this ordering:  

 ),(max
)(max
)(max

)(

)( 2

1

1

2

is
isN

isN

js

js
N

j

N

j ≤
∆
∆≤=′

∑

∑
∆

=

∆

=β       

∑

∑

=

∆

== N

j

N

j

js

js
f

1

1

)(

)(
 (8) 

Where ∆N is the number of potential faults remaining. In the limit as ∆N→0: 

 0),(max →→′ fisβ  

Conversely, the reverse removal order where commonly occurring faults are re-
moved first will leave the rarely occurring faults until last. So in the best case:  
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3.5 Dependent Order Plus Random Removal Strategies 

If one removal strategy is random with detection probability f and the other strategy is 
ordered with dependency between s(i) and the removal order, it follows that the pro-
portion of common faults is bounded by: 

 )(max)(min isfisf ≤′≤ β  

Even in the worst case where β′≤ f max s(i), it follows that:  
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So the proportion of common faults will still reduce when f→0. 

4 Summary of the Model Results 

The fault-based model results are summarized in Table 1 below, where: 
 f  is the fraction of faults remaining after testing; 
β  is the expected proportion of common faults before testing starts; 
β 
′ is the expected proportion after testing. 

Table 1. Common fault proportion after testing (different test assumptions) 

Test strategy A Test strategy B Correlation with s(i) Expected β 
′ 

ordered same order none ≈β 
random random none fβ 
ordered random none ≈fβ 
ordered same order small s removed first → max s(i) 
ordered random small s removed first → f max s(i) 
ordered same order large s removed first → min s(i)  
ordered random large s removed first → f min s(i)  

 
It can be seen that the overall proportion of common faults depends on the correla-

tion between: 

• The two test strategies; 
• Each test strategy and the fault selection probability. 

In practice, the test strategies are unlikely to correspond exactly with any of the 
specific cases shown in Table 1, but we can see that, even with the same test set, it is 
possible for β 

′ to remain the same, and with differing test strategies, it is likely that 
the proportion of common faults will decrease.  



 

 

This observation is however only valid if the model assumptions are valid. This 
will be considered in more detail in the next section.  

5 Validity of Model Assumptions 

5.1 Set of Characteristic Faults  

There is some experimental evidence that programmers make similar mistakes that 
result in a set of characteristic faults. The “programming contest” programs [10] pro-
vide a useful research resource as there are many thousands of implementations of 
particular contest problems. Research studies [1, 11] have shown that many pro-
grammers can produce exactly the same characteristic faults.  

On a smaller scale, but with more realistic programs, an analysis of faults found in 
the Knight and Leveson diversity experiment showed that similar faults existed in 
multiple versions [2] where (possibly) 7 out of 27 versions contained a similar fault.  

There is therefore considerable support for the assumption that characteristic faults 
exist in programs (typically related to specific functions that are implemented by the 
program). 

5.2 Independent Selection of Faults from the Pool 

An analysis of the Knight and Leveson diversity experiment [2] found 45 faults in 27 
versions. If we take these to be the characteristic set of N faults, we can use the data to 
test the independent selection assumption. With independent selection, the probability 
of a perfect version, pp, is: 
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It should be noted that dependence in fault selection would actually increase the 
value of pp. For example, if s(1)=s(2)=0.5, then pp=0.25 but if the two faults were 
always selected together, then pp=0.5. 

In the Knight and Leveson example, the number of faults found was N=45, and the 
average faults per version is 1.67. With s(i) assumed to be identical for all faults at 
s=1.67/45=0.037. Assuming independent selection, pp=(1−0.037)45=0.183, so 
(27×0.183)=4.95 versions are expected to be perfect. This is close to the actual figure 
of 6 perfect versions out of 27. Given the sampling uncertainties involved, the two 
numbers are in good agreement, which suggests the independent selection assumption 
is a reasonable approximation in this example. 

5.3 Same Fault Selection Probabilities by Diverse Teams 

The fault selection probabilities could differ in the diverse teams (e.g. due to different 
development techniques). It might even be the case that some faults, like array bound 
violations, are impossible in some technologies, i.e. sA(i)=0. In the most extreme case, 



 

 

the selection probabilities could be completely disjoint (i.e. complete negative corre-
lation between sA and sB). So the assumption of similar detection probabilities (i.e. 
complete positive correlation between sA and sB) is the most pessimistic assumption as 
it maximizes β.  

5.4 Independence of Fault Removal Order and Fault Selection Probability 

The credibility of independence between fault selection probability and fault removal 
is difficult to determine empirically, but we do have some experimental evidence for 
cases where the removal is ordered by the fault “size” (where fault size is defined as 
the proportion of input space occupied by the fault). Typically we would expect faults 
detected by dynamic testing to fail more often if the faults are larger, so the removal 
order would be related to fault size. With independence, we would expect similar 
inclusion probabilities regardless of fault size. Unpublished data from research under-
taken for [11] is shown in Fig. 1 below. This shows the distribution of failure region 
sizes as a proportion of the whole input space. It should be noted that an “equivalence 
class” can be a “basic fault” (where programmers make the same mistakes in different 
versions) or a combination of two or more “basic faults”. 
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Fig. 1. Selection probability versus fault size 

It can be seen that, apart from the very large equivalence class sizes, the inclusion 
probability varies between 0.1% and 1% for most classes. So with ordered removal 
we would expect β 

′ to be 10-2 or less during fault removal.  
A preliminary review of the distribution of failure rates in Knight and Leveson data 

(used as a surrogate for fault size) indicates that there is one case where 4 versions in 
27 had faults with identical failure rates that were related to the same basic function. 
If this is due to the same characteristic fault i being present in 4 versions, then 
s(i)~15%. There are also 3 cases where faults in 2 versions out of 27 have similar 



 

 

rates (i.e. s(i)~7.5%). The remaining 35 faults only appear in one version (s(i)~3.7%). 
These fault selection probabilities appeared to have little correlation with their associ-
ated failure rates. 

These limited results suggest, at least in some cases, a presumption of independ-
ence between fault inclusion and removal may be credible. However more empirical 
studies are needed to determine whether such independence is likely for test strategies 
in general. 

6 Discussion 

6.1 Relationship to Prior Research 

Littlewood et al. [5] showed that diverse test strategies can be more effective at im-
proving reliability than a single test strategy, but only in the context of a single pro-
gram version. Popov and Strigini [8] proposed a fault-based model for diverse pro-
grams for modeling the improvement achievable by diversity, but did not explicitly 
consider the impact of testing or diverse test strategies. Popov and Littlewood [7] 
considered the impact of a range of test strategies on diverse program versions during 
development, but the model is constructed at the level of specific points in the input 
space (rather than the failure regions covered by a fault) so it is difficult to represent 
fault inclusion and fault removal explicitly.  

Unlike these earlier models, the model presented in this paper has a more limited 
scope as there is no attempt to estimate the individual and joint pfds of the diverse 
versions. The analysis in this paper only sought to estimate the proportion of faults 
that are likely to be common (β) and how this proportion is affected by testing (β 

′). 
The relationship of β 

′ to individual and joint pfds is indirect. We would expect that a 
smaller β 

′ would result in a smaller joint pfd, but this might not be true for all usage 
profiles.  

For the model to be applicable, we need to be confident that the underlying as-
sumptions are valid and that the β model is a useful measure of the potential reliabil-
ity improvement. The evidence presented in Section 5 provides some justification that 
the fault inclusion assumptions are credible and shows how an analysis of the number 
of common faults observed during the testing of diverse versions could provide an 
empirical estimate for β. 

In the remainder of this discussion we consider the relationship of β to the ex-
pected reliability improvement and how this might be justified. We also consider how 
the reduction in β predicted for diverse strategies could be validated experimentally. 

6.2 Relationship of β to pfd  

While our model indicates that the choice of testing strategies could either keep the 
proportion of common faults β constant or even decrease the proportion, it is difficult 
to relate the results directly to the expected improvement in reliability of a diverse 



 

 

pair of programs under a given choice of test strategies. To make a link with pfd, fur-
ther modeling assumptions need to be made.   

If there are n faults in versions A and B, and nβ are common faults then: 
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Where pAB(1..βn) are the probabilities of failure of the common faults,  
pA(βn+1..n) are the probabilities of failure of the unique faults in version A, and 
pB(βn+1..n) are the probabilities of failure of the unique faults in version B.  

If we further assume that the failure probabilities are similar for common and 
unique faults, i.e. EpAB(i) ≈ EpA(j) ≈ EpB(k), then the pfds of A and B are similar, i.e.:  

 pfdpfdpfd BA =≈  

Where pfd is the average probability of failure on demand of a single version. It 
also follows that the probability of simultaneous failure due to the common faults is: 

 pfdpfdcommon ⋅≈ β  

If we further assume that the unique faults fail independently between versions, 
then the probability of coincident failure between versions due to the unique faults is: 
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Combining these two contributions, the overall probability of coincident failure be-
tween the versions, pfdpair, is: 

 22)1( pfdpfdpfdpair ββ −+⋅=  (9) 

If we define a reliability improvement ratio R as pfd / pfdpair, then from equa-
tion (9): 
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When pfd is small: 
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While for a large pfd, the second term in equation (10) is dominant, i.e.  
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So we would expect the improvement ratio R to be close to the independence as-
sumption for large pfd values, where R≈1/pfd, and be asymptotic to a plateau value of 
R=1/β for small pfd values. 

There is some empirical support for these predictions from experiments undertaken 
in [12] and [9] using a large number of program versions produced in a programming 
contest [10]. The experimental analysis progressively removed the versions with the 
highest pfds and, for the remaining versions, calculated the mean pfd of all single 
programs and program pairs (pfdpair). An example of the resultant reliability im-
provement R ratio is shown in Fig. 2 below (similar graphs were obtained for the 
other program examples). 

 

Fig. 2. Reliability improvement ratio vs. mean pfd of versions (van der Meulen et al. 2008) 

It can be seen that for large mean pfd values, R is close to the reliability improve-
ment expected when all failures are independent (the straight line). For small pfd val-
ues, the improvement reaches a plateau at around 100, which corresponds to a β value 
of around 0.01. Both these features are predicted by equation (9). The plateau at low 
pfd is expected for small pfd values where we expect R to remain constant at 1/β. 
With strict removal ordering which is independent of inclusion probability s(i), we 
would expect β 

′ to be invariant, and we do see some evidence that a plateau has been 
reached. This would be consistent with inclusion probabilities s(i) with a mean value 
of 0.01. The “ideal” behavior predicted by the model is shown in Fig. 3 below (where 
β =0.01 is assumed).  

The similarity of theory and experiment lends some support to the model proposed 
in equation (9). Note that this represents the improvement expected on average—not 
the actual improvement achieved for a specific program pair and usage profile. 
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Fig. 3. Reliability improvement ratio (β model) 

6.3 Validating the Performance of Diverse Test Strategies 

One encouraging result from the model is that, given independence between fault 
inclusion probability and fault removal, a common test strategy does not necessarily 
increase the proportion of common faults, i.e. β 

′ = β. However the model suggests 
that β 

′ < β is feasible if diverse test strategies are employed.  
The impact of alternative strategies on β 

′ could be evaluated empirically by simu-
lating different fault removal strategies on the large set of program versions produced 
in programming contests such as [10]. 

7 Conclusions and Further Work 

This paper has presented a model of diverse programs that assumes there are a com-
mon set of potential software faults that are more or less likely to exist in a specific 
program version.  

Testing is modeled as a specific ordering of the removal of faults from each pro-
gram version. Different models of testing were examined to derive the proportion of 
common faults as testing progresses. 

Given the assumptions made, the theory suggests that a common test strategy 
(where common faults are removed in the same order in both program versions) could 
leave the proportion of common faults unchanged. So a common test strategy need 
not reduce the efficacy of diverse programs. We also show that diverse test strategies 
are likely to reduce the proportion of common faults. In the best case, where the test 
strategies are entirely uncorrelated, the common proportion after testing tends to zero. 

We have also discussed how this proportion of common faults could be related to 
the expected reliability improvement. 

Further work should be undertaken to: 



 

 

• Validate the assumptions used in the model; 
• Investigate the link between the proportion of common faults and the expected 

reliability improvement; 
• Validate the testing strategy predictions in experimental research studies; 
• Expand the theory to cover diverse development methods. 
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