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Abstract

The standard approach to deriving the confidence bound for the probability of failure on demand (pfd) of a software-based
system is to perform statistical tests on the whole system as a “black-box”. In practice, performing tests on the entire
system may be infeasible for logistical reasons, such as lack of availability of all component subsystems at the same time
during implementation. This paper presents a general method for deriving a confidence bound for the overall system
from successful independent tests on individual system components. In addition, a strategy is presented for optimizing
the number of tests allocated to system components for an arbitrary system architecture that minimizes the confidence
bound for the system pfd. For some system architectures, we show that an optimum allocation of component tests is as
effective as tests on the complete system for demonstrating a given confidence bound.

The confidence bound calculation makes use of many of the concepts used in the reliability analysis of hardware
structures, but unlike a conventional hardware analysis, the method does not presume statistical independence of failures
between software components, so the confidence bound calculation for the software should always be conservative.
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1. Introduction

The standard approach to deriving a confidence bound
for a software-based system is to perform statistical tests
on the system as a “black-box” [1]. In practice, however, it
may be impractical to test the entire system for logistical
reasons. For example, the hardware for only one compo-
nent can be made available for statistical test purposes –
this was a constraint in the statistical reliability testing of
the computerized protection systems at both Sizewell B
[2] and Hinkley Point C [3] nuclear power stations. In this
paper we assume that independent statistical tests can be
applied to the individual software-based components that
form part of a redundant complex system.

We first describe the general approach to statistical
testing and outline the technical challenges addressed by
our paper. Next we summarize the confidence bound the-
ory for a system tested as a “black-box” system and then
extend the theory to derive a conservative, analytic con-
fidence bound for a system based on the number of com-
ponent tests and the structural redundancy of the system.
We also identify two sub-optimal distributions of compo-
nent tests that can improve the system confidence bound.

Using this generic model, we derive specific confidence
bounds for different system structures and optimized com-
ponent test plans for each structure. The approach is il-
lustrated using numerical examples.

2. Background to Statistical Testing

For UK nuclear safety systems, the Office for Nucle-
ar Regulation (ONR) requires a safety case to demon-
strate “production excellence” combined with “indepen-
dent confidence building measures” [4]. The demonstra-
tion of production excellence includes a requirement to
meet all relevant standards for nuclear safety systems such
as IEC 61226 [5] and IEC 61513 [6] for the hardware and
IEC 60880 [7] for the software. Production excellence
should ensure the supplied system has the required safe-
ty integrity and reliability attributes, but a further inde-
pendent confidence building stage is required for the final
delivered system.

Statistical testing [8, 9, 1] is an independent confidence
building measure that provides an estimate for the soft-
ware probability of failure on demand (pfd) of a demand-
based system to some confidence bound, and it is recom-
mended in functional safety standards such as IEC 61508
[10].

Statistical reliability testing was performed as part of
the independent confidence building programme required
by ONR for the computer-based primary protection sys-
tem (PPS) at Sizewell B nuclear power station [1]. The
final version of the PPS was subjected to 5000 simulat-
ed demands to support a pfd claim of 10−3 to the 99%
confidence level recommended by ONR [11].

Reliability testing of safety systems is also under way
for new nuclear power stations being built in the UK [3]
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where the target pfd could be even more demanding.
The confidence bound derived from statistical reliabili-

ty testing is based on a number of modelling assumptions.
The stated assumptions in IEC 61508 [10] for the low de-
mand rate case (such as a protection system) are:

1. The test data distribution is equal to the distribution
of demands during on-line operation.

2. Test runs are statistically independent from each oth-
er, with respect to the cause of a failure.

3. An adequate mechanism exists to detect any failures
which may occur.

4. Number of test cases N > 100.

5. No failure occurs during the N test cases.

To satisfy the first assumption, the test demands should
be representative of those encountered in operation. This
requires identification of the different events that could
trigger a demand, the event frequency and the plant tran-
sients that result from different events. For example, in
a nuclear plant typical failure events are: loss of reactor
coolant, pump failure and control rod failure. Each type
of event results in a different plant transient that affect-
s different plant parameters (like temperature, pressure,
coolant flows and neutron flux).

The second assumption can be met in the protection
system context as the protection system is normally reset
after a reactor trip (so the software always starts from the
same initial state). Provided the response to a demand is
independent of the time between reset and demand, accel-
erated testing is possible, so the required number of tests
can be performed in a realistic period of time.

The third assumption requires a perfect “oracle” that
determines if a failure has occurred. The required response
is relatively easy to determine in a nuclear plant since each
simulated plant transient is expected to result in a reactor
trip.

The last two assumptions will also be met in a nuclear
protection context as many thousands of tests are needed
for the required pfd and, in the exceptional event that
a failure is observed, the software will be corrected and
retested from scratch.

3. Contribution of this Paper

Our paper presents a method for deriving a confidence
bound for the pfd of a software-based system based on
failure-free tests performed on its component parts. The
method makes use of standard reliability modelling con-
cepts utilized in hardware PRA [12] such as structure func-
tions, cutsets, minimal cutsets, reliability block diagrams
(RBD) and success paths, but uses an entirely different ap-
proach to quantifying the contribution of the component
software to the system pfd.

A different quantification approach was needed for the
following reasons:

1. Failure-free tests. Hardware reliability models are
typically based on comprehensive prior failure data
of mass-produced components [13]. With multiple
failures, the failure probability of a component can
be estimated with a known precision, and used with-
in a structural reliability model to derive a “best es-
timate” for the system pfd.
By contrast, zero failures are observed in a successful
statistical software test campaign, so the maximum
likelihood estimates for all the failure probabilities
are zero. However it is possible to state classic confi-
dence intervals for the actual unknown failure prob-
abilities [14].

2. Systematic failure. Unlike hardware, software fail-
ures are deterministic. Identical sequences of input
values will always cause a software component to fail.
Software reliability is determined by the probability
that a defective region of the input space is hit dur-
ing normal operation [15].
It has been shown empirically [16] and explained the-
oretically [17, 18] that similar regions in the input
space are likely to be defective in different software
implementations (e.g. due to a specification flaw).

To address these issues, we use a radically different
method for deriving the system pfd from the component
tests. Since accurate software component failure probabil-
ities are impossible to derive, and dependencies between
the component failures are unknown, we instead assign a
worst case set of probabilities to the system cutsets that
maximizes the system pfd confidence bound. Our analysis
shows that the bound is maximized when all the failure
probability is assigned to a single minimal cutset.

As a result, the model presented in this paper produces
results that differ from conventional hardware reliability
modelling. This is not because either approach is flawed, it
simply reflects differences in the available failure data and
the nature of hardware and software failure. In practice,
both hardware and software model estimates are needed
to compute the overall pfd of a computer-based protection
system.

4. Conventional Confidence Bound Theory

If a system is subjected to N test demands without
failure, the (1 − α) confidence interval for the system pfd
includes all the values, which are not rejected by the like-
lihood ratio (LR) test against the maximum likelihood al-
ternative (H1: pfd = 0), at the significance level α [14].

If pfd = q, then likelihood of observing no failures in
N tests is (1 − q)N . The maximum likelihood of this ob-
servation (for q = 0) is 1, resulting in the likelihood ratio
LR = (1− q)N .

Therefore, the (1 − α) confidence interval for the un-
known value of the system pfd is described by the following
inequality:

LR = (1− q)N ≥ α. (1)
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with the upper confidence bound:

qs = 1− α1/N . (2)

This bound qs can be conservatively approximated [8] by
a bound qu > qs where

qu =
1

N
ln(1/α). (3)

This confidence bound is established by testing the
entire system as a “black-box”. In the next section we
present an extension to the standard approach that allows
a system confidence bound to be derived by performing
statistical tests on the individual components.

5. Confidence Bounds from Component Tests

Failure-free testing over m individual components can
be characterized by a test plan vector:

n = (n1, n2, . . . , nm)′ (4)

where m is a number of components, ni is the number of
(failure-free) tests for component i, and the total number
of tests is:

N =

m∑
i=1

ni. (5)

To determine the attainable confidence upper bound
for the system pfd, we need to take account of the fact
that a failure at the component level does not necessarily
result in a failure at the system level if the overall system is
designed to be fault tolerant. In the following subsections
we consider how the fault tolerant behaviour is defined,
and how this can be used to infer a confidence bound for
the system based on component tests.

5.1. Characterizing Fault Tolerance

To characterize the fault tolerance capability of the
overall system, we first define x = (x1, x2, . . . , xm)′ as a
random binary vector of indicators of component failure.
If component i fails, xi = 1 and xi = 0 otherwise.

The failure-proneness of the overall system is repre-
sented by a structure function ϕ(x) [19], where ϕ(x) = 1
if the system fails for a given combination of component
failures and successes x (a system state).

We presume ϕ(x) is monotonic, and

ϕ(0) = ϕ(0, 0, . . . , 0) = 0;

ϕ(1) = ϕ(1, 1, . . . , 1) = 1.

For example, Table 1 shows the states for a 2 out of 3
(2oo3) vote structure where two or more component fail-
ures will result in system failure (i.e. where ϕ(x) = 1).

This example presumes that all failure states defined
by ϕ(·) are determined solely by the interconnection of
components within the structure. However, if there are
identical software-based components within the structure

Component c1 c2 c3
State x1 x2 x3 ϕ(x)

x0 0 0 0 0

x1 1 0 0 0

x2 0 1 0 0

x3 0 0 1 0

x4 1 1 0 1

x5 1 0 1 1

x6 0 1 1 1

x7 1 1 1 1

Table 1: Example 2oo3 vote structure function

that are subject to the same inputs, some failure states rep-
resented by an architecture-based structure function will
be infeasible.

This can be represented formally by redefining the struc-
ture function as:

ϕ(x) = ϕA(x)φS(x), (6)

where ϕA(x) is based solely on the component connection
architecture and φS(x) is a further binary indicator func-
tion that takes account of software dependencies between
components. The φS(x) indicator function can be viewed
as an additional filter that excludes system states that are
infeasible, i.e. φS(x) = 0 if the combination is infeasible,
and φS(x) = 1 if the combination is feasible.

State x1 x2 x3 ϕA(x) φS(x) ϕ(x)

x0 0 0 0 0 1 0

x1 1 0 0 0 0 0

x2 0 1 0 0 0 0

x3 0 0 1 0 1 0

x4 1 1 0 1 1 1

x5 1 0 1 1 0 0

x6 0 1 1 1 0 0

x7 1 1 1 1 1 1

Table 2: A 2oo3 vote structure function with failure dependency

For cases where all components differ, all combinations
are feasible, so φS(x) = 1 for all system states and ϕ(x) is
the same as the original structure function ϕA(x). On the
other hand, Table 2 includes an example filter for the case
where components c1 and c2 are identical so their binary
failure states must be identical to be feasible. As a result,
the only feasible failure states of the system are x4 and x7.

5.2. Derivation of the System Confidence Bound

In the following analysis, we will use the structure func-
tion ϕ(x) to derive a worst case confidence bound at the
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system level due to component software failure1 based on
the successful tests of the individual components.

5.2.1. Basic Concept

Unlike a PRA calculation, there is no assumption that
the software components fail independently. For example,
component software failures might overlap partly or, in the
worst case, completely – as illustrated in Figure 1 where
the same input value can trigger a failure in components
c1 and c2.

Figure 1: Worst case 2oo3 fault distribution (diverse components)

In practice, we do not know the probability of joint
component failures. A conventional PRA might assume
independent failures between components to compute the
joint failure probabilities. Our approach is more conser-
vative since it identifies the worst case scenario consistent
with the system confidence bound. These scenarios are
cases where:

• component failures only occur in system states that
cause system failure (e.g. concurrent component fail-
ures),

• the probability of being in each failure state (cutset)
is chosen to maximize the pfd confidence bound for
the overall system for the given set of tests,

• the assigned probability is always located in a mini-
mal cutset failure state.

While this approach may appear to be overly-pessimistic,
it does represent credible extremes like the one shown in
Figure 1, where a common fault is present in two software
components and only tests on these two components are
relevant for deriving the system confidence bound.

5.2.2. Structure-based Confidence Bound Model

For a given distribution of system state probabilities
p(·), the pfd of the overall system, Q is:

Q =
∑

x∈Bm

ϕ(x)p(x), (7)

1Hardware failure and wearout mechanisms that occur in physical
components need to be addressed separately.

where B = {0, 1} is a binary vector representing the pos-
sible failure states of a single component.

For an individual component i, the failure probability
qi will be the sum of all failure state (cutset) probabilities
that include a failure of component i, i.e.

qi =
∑

x∈Bm

xip(x). (8)

For example, if we multiply the 2oo3 structure function
in Table 1 by p(·) we obtain the structure-based probabil-
ity table shown in Table 3. It can be seen that the failure
probability of component c1 is:

q1 = p(x1) + p(x4) + p(x5) + p(x7),
while the system pfd is:

Q = p(x4) + p(x5) + p(x6) + p(x7).

p(·) x1p(x) x2p(x) x3p(x) ϕ(x)p(x)

p(x0) 0 0 0 0

p(x1) p(x1) 0 0 0

p(x2) 0 p(x2) 0 0

p(x3) 0 0 p(x3) 0

p(x4) p(x4) p(x4) 0 p(x4)

p(x5) p(x5) 0 p(x5) p(x5)

p(x6) 0 p(x6) p(x6) p(x6)

p(x7) p(x7) p(x7) p(x7) p(x7)

1 q1 q2 q3 Q

Table 3: 2oo3 structure probability table

Given component failure probabilities q = (q1, . . . qm)′,
the likelihood of observing zero failures in m components
with test plan n is:

L(q,n) =

m∏
i=1

(1− qi)ni . (9)

This is equivalent to equation (1) for the case where there
is only a single black-box component i.e. m = 1.

Re-expressing (9) in terms of system state probabili-
ties, the likelihood function given the observation is:

L(p(·),n) =

m∏
i=1

(
1−

∑
x∈Bm

xip(x)

)ni

(10)

L(p(·),n) reaches its maximum value 1, when p(0) = 1
and p(x) = 0 for all other x 6= 0, resulting in the likelihood
ratio against the maximum likelihood alternative equal to
LR = L(p(·),n)

Therefore, similar to the “black-box” testing case (1),
the classic confidence region D0 for p(·) is defined by

D0 = {p(·) : L(p(·),n) ≥ α} , (11)

where 1− α is the confidence level.
The confidence region D0 defines the set of parameter

values p(·), which are in acceptable agreement with the
observed number of failure-free component tests n.
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To be conservative, we need to identify the distribu-
tion p(·) that produces the greatest attainable bound, qs,
for the system pfd Q (7) within the confidence region con-
straint (11), i.e.:

qs = max
p(·)∈D0

Q. (12)

As the constraint equation for the D0 confidence region
is non-linear, finding the exact value qs is a non-linear
optimization problem where numerical solving techniques
have to be used to identify the set of values for p(·) that
maximize Q.

Appendix A.1 shows that there is a conservative, linear
approximation to the confidence region, D1, that can be
used to derive an analytic upper bound qu > qs based on
the bin-filling algorithm reported in [20, 21]. This analysis
shows that the upper bound qu can always be obtained by
assigning all the failure probability to the cutset with the
smallest total of component tests.

This is illustrated in Table 4 for a 2oo3 structure where
the components are ordered by the number of tests (with
c1 having the least number of tests).

p(·) x1p(x) x2p(x) x3p(x) ϕ(x)p(x)

1− qu 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

qu qu qu 0 qu
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 qu qu 0 qu

Table 4: 2oo3 structure: worst case probability distribution p(·)

In the approximation, the D1 confidence region constr-
aint (11) for m components is∑

i=1..m

qini ≤ ln(1/α). (13)

For the example in Table 4, it follows that

qu(n1 + n2) = ln(1/α). (14)

Appendix A.1 provides a general proof that, for any struc-
ture, the worst case confidence bound value is

qu = min

(
ln(1/α)

Nmin
, 1

)
, (15)

where Nmin is the smallest total of component tests in a
cutset that can cause system failure.

This component-based confidence bound equation is
very similar to equation (3) that is used for a full system
black-box test – the only difference is that Nmin ≤ N .

Stated formally, Nmin is determined by the structure
function ϕ and the n tests applied to the individual com-
ponents, i.e.

Nmin = min
x∈Bm:ϕ(x)=1

(x · n), (16)

where (x · n) is the scalar product of the state and test
plan vectors, i.e.

∑
i xini.

From the definition of Nmin in equation (16), it is clear
that the minimum value of (x · n) will always be deter-
mined by a state x that represents a minimal cutset. This
is because any state x′ that represents a superset of a min-
imal cutset x would only increase the number of associated
component tests, i.e. (x′ · n) ≥ (x · n).

This is illustrated in Figure 2 for a 2oo3 vote struc-
ture. All the shaded areas represent failure states x where
ϕ(x) = 1. The minimal cutsets are the states with just
two failed components, with the smallest sum of tests be-
ing Nmin = (n1 + n2). Clearly the number of tests asso-
ciated with the central (non-minimal) cutset can never be
less than (n1 + n2). So the failure state with the smallest
number of tests, Nmin, will always be one of the minimal
cutsets.

Figure 2: Example 2oo3 structure: system failure cutsets and appli-
cable component tests

It may seem counter-intuitive that the pfd bound for
the system is determined by a single minimal cutset while
excluding other minimal cutsets completely. For example,
if all component tests were equal, one might expect all
failure states x with the same x · n value have to be in-
cluded to obtain the maximum value for qu. This option
is allowed by the “bin-filling” algorithm described in Ap-
pendix A, but the probability p(x) assigned to each failure
state “bin” x is constrained by the confidence bound (13),
so the nett result is the same as assigning all of the prob-
ability to a single failure state “bin”.

This is illustrated in Table 5 where three components
have an equal number of tests n, and p(x) = qu/3 for all
three minimal cutsets. From (13):

2qu
3

(n+ n+ n) = qu.2n = ln(1/α). (17)

So qu has exactly the same bounding value as the single
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p(·) x1p(x) x2p(x) x3p(x) ϕ(x)p(x)

1− qu 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

qu/3 qu/3 qu/3 0 qu/3

qu/3 qu/3 0 qu/3 qu/3

qu/3 0 qu/3 qu/3 qu/3

0 0 0 0 0

1 2qu/3 2qu/3 2qu/3 qu

Table 5: 2oo3 structure: probability assigned to three cutsets

cutset case (14) – in both cases the confidence bound qu
is determined by 2n component tests.

5.3. Accuracy of the Confidence Bound

Appendix A.2 derives an analytic lower limit, qd, to the
exact confidence bound where

qd = 1− α1/Nmin ≤ qs. (18)

The difference between the lower bound, qd (18) and
upper bound, qu (15) represents the maximum error in us-
ing the approximate confidence bound. This is illustrated
in Figure 3 for a 95% confidence bound.

Figure 3: Comparison of upper and lower bound approximations

The error for qu can be large for a small number of
tests, and the confidence bound approximation will even
attain unity if Nmin < ln(1/α) which is around 3 tests for
a 95% confidence bound.

However for typical statistical testing campaigns, N
will be more than a thousand and the confidence bound
will be over-estimated by no more than 1%.

For the remainder of this paper, we will assume that
the number of tests for a component always exceeds ln(1/α)
and hence the upper bound reduces to:

qu =
ln(1/α)

Nmin
. (19)

6. Optimizing Component Tests

Given a fixed number of testsN , we also need to consid-
er the optimal apportionment of tests to individual compo-
nents. To minimize qu, we need to identify the maximum
Nmin value achievable given the constraint on the total
number of tests N .

If all components fail identically, there is no need for
apportionment as there is only one feasible cutset where:

Nmin =

m∑
i=1

ni = N (20)

and the tests can be arbitrarily apportioned to individual
components.

For symmetrical structures, the optimal apportionment
is an equal number of tests for each component.

For asymmetric structures, such as the reliability block
diagram (RBD) shown in Figure 4, explicit optimization
is needed to ensure that the maximum value of Nmin is
obtained.

Figure 4: Shortest success paths in a reliability block diagram

Appendix B shows that it should always be possible to
construct an allocation of component tests such that:

Nmin ≥ N/kp. (21)

where kp is the length of the shortest possible success path.
For example, in Figure 4, the dashed lines denote the

shortest success paths where kp = 3.
Appendix B also identifies two sub-optimal allocation

plans that always satisfy this constraint:

• Single shortest path, where N/kp tests are allocated
equally to all components on just one success path.

• Balanced shortest path, where the number of tests
per component is proportional to the number of short-
est success paths that include the component.

Both allocation methods are optimal for cases where
each component appears only once in the RBD. The bal-
anced path test plan also produces the optimal result for
symmetric r out of m structures (where the same compo-
nent is present in more than one RBD branch).

Figure 5 shows the result of applying the balanced path
allocation procedure to the RBD in Figure 4. Components
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c6, c7 and c8 have no tests, and c1 has twice as many
tests as the other shortest path components (because it is
present in two paths). It can be seen that the total number

Figure 5: Allocation of tests to components

of tests for the components in all minimal cutsets1 is the
same (N/3).

7. Application of the Theory to Different Struc-
tures

In this section, we apply the theory to some commonly
used symmetrical structures and derive system pfd confi-
dence bound formulae for different allocations of N statis-
tical tests to the system components.

Application of the theory to arbitrary asymmetrical
structures is also considered.

7.1. Application to r out of m Vote Structures

From equation (19) we have to derive Nmin to deter-
mine the system confidence bound qu.

Furthermore, Section 5.2.2 shows that it is only neces-
sary to compute the component test totals for the minimal
cutsets within the structure ϕ to derive Nmin.

For a symmetrical r out of m structure, a further sim-
plification of this derivation is possible. We know that the
minimal cutset size z that causes system failure is always:

z = m− r + 1 (22)

For example, the number of component failures needed to
defeat a 2oo3 vote is z = 2 (i.e. 3− 2 + 1).

In practical terms, this means that Nmin can be com-
puted by ordering the component tests in a sequence j =
1 . . .m where nj+1 ≥ nj , then summing the first z terms,
i.e.

Nmin = nmin(z) =
∑

j=1...z

nj . (23)

For the optimal case where the N tests are split evenly
between the m components

Nmin = z
N

m
, (24)

1The dashed lines in Figure 5 are only example cutsets – there
are further minimal cutset component combinations.

and the system confidence bound is:

qu|ϕroom =
m

zN
ln (1/α). (25)

It follows that for a 1 oo m structure where z = m, equa-
tion (25) reduces to:

qu|ϕ1oom =
1

N
ln (1/α). (26)

This is exactly the same as equation (3) – the bound
achieved by statistically testing the entire system as a
black-box. In addition, since

Nmin = nmin(m) =
∑

j=1...m

nj = N, (27)

there is no need to split the tests evenly between compo-
nents; any apportionment of N tests in a 1 oo m structure
produces the same confidence bound.

At the other extreme, a m oo m structure is a series
connected structure of m components where any failure
can cause system failure, i.e. z = 1. Hence for a series
connected structure, the optimal equation (25) reduces to

qu|ϕmoom =
m

N
ln (1/α). (28)

In addition, since the minimal cutset size is z = 1 for a
series-connected structure, the Nmin equation for an arbi-
trary split of tests (23) reduces to:

Nmin = nmin(z) = min
i=1...m

ni. (29)

In the cases presented above, it is presumed that all
software components are diverse, so all failure states per-
mitted by the ϕroom structure function are feasible. With
identical software-based components, the r out of m vote
provides no defence against systematic faults as all compo-
nents will fail on the same input demands. To model this
software failure dependency, an additional filter function
φS(x) has to be included in the structure definition where:

φS(x) = 1, if
∑
xi = m

φS(x) = 1, if
∑
xi = 0

φS(x) = 0, otherwise.

Combined with the architecture structure function:

ϕ(x) = ϕroom(x)φS(x), (30)

we obtain:

ϕ(x) = 1, if
∑
xi = m

ϕ(x) = 0, otherwise.

It follows that the only feasible failure state is the m-
component cutset where:

Nmin =
∑

i=1...m

ni = N. (31)
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Hence:

qu|ϕr00m, φS =
1

N
ln (1/α). (32)

Since the total number of tests, N , determines the sys-
tem confidence bound, it does not matter how the tests ni
are apportioned between the components.

The results obtained from applying the theory to diff-
erent symmetrical structures are summarized in Table 6.

Structure Software Nmin Optimum value

ni qu

Series (m oo m) Diverse min(ni)
N
m

m
N

ln 1
α

Parallel (r oo m) Diverse nmin(z)
N
m

m
zN

ln 1
α

Parallel (r oo m) Identical N any
1
N

ln 1
α

Parallel (1 oo m) Either N any
1
N

ln 1
α

Table 6: Summary of demand-based confidence bound bounds

For diverse components, nmin(z) can be derived by
summing the ni values of the first z components (ordered
by the number of tests).

For identical components subjected to tests from the
same input distribution, Nmin = N for all r and m values.

7.2. Application to Arbitrary Structures

In Section 5.2, it was shown that we only need to con-
sider the minimal cutsets of a structure to determineNmin.
It follows that for any arbitrary structure, the value of
Nmin can always be determined by the following proce-
dure:

• identify all the minimal cutsets,

• sum the number of tests for the components in each
minimal cutset,

• take the minimum of the cutset test totals.

This value of Nmin can be inserted into equation (19) to
derive the system confidence bound.

8. Numerical Examples

The following numerical examples illustrate the deriva-
tion of the system confidence bound based on tests of in-
dividual components for cases where the total number of
tests N = 3000 and the (1 − α) confidence level is 95%.
The examples include symmetrical majority vote struc-
tures where an even allocation of tests is always optimal,
and asymmetric structures where an uneven allocation of
component tests is needed to optimize the pfd confidence
bound that can be claimed for the system.

8.1. Majority Vote Examples

Let us take as an example, a protection system where
three divisions contain identical software and the division
outputs are subjected to an external 2oo3 hardware vote.
As the divisions are identical, they always fail simultane-
ously so all failures are assumed to occur in the central
failure cutset (see Figure 2). So, in principle, it should not
matter how the tests are distributed between divisions.

Table 7 compares the worst case bound defined by
equation (32) for two alternative test plans. In the first
plan the tests are equally spread between the three divi-
sions. In the second plan, most tests are applied to a single
division with only 100 tests applied to the other hardware
divisions when they become available later in the project.
The results are shown in Table 7 where we compare the
system confidence bound derived using the analytic ap-
proximation (19), qu against the exact solution, qs derived
by numerically solving equation (12).

Component i Demands ni Demands ni

1 1000 100

2 1000 100

3 1000 2800

Nmin 3000 3000

qu (approx.) 0.0009986 0.0009986

qs (exact) 0.0009981 0.0009981

Error (%) +0.05% +0.05%

Table 7: Confidence bound comparison (2oo3 vote of identical com-
ponents)

In this example, the tests for all components (high-
lighted in bold) are included in the Nmin value used to
derive the confidence bound. It can be seen that the nu-
merical bound and the approximated analytic bound are
in close agreement and the results are not affected by the
apportionment of tests between components.

Now let us apply these test plans to a 2oo3 vote system
where the division software is not identical (e.g. the soft-
ware is intentionally diverse or includes different ancilliary
software functions). The results are shown Table 8.

Component i Demands ni Demands ni

1 1000 100

2 1000 100

3 1000 2800

Nmin 2000 200

qu (approx.) 0.0014979 0.0149787

qs (exact) 0.0014971 0.0148670

Error (%) +0.05% +0.75%

Table 8: Confidence bound comparison (2oo3 vote of non-identical
components)

8



In this example, the components are ordered by the
number of tests performed. As the minimal cutset size
is z = 2 for a symmetrical 2oo3 vote structure, Nmin =
nmin(z), and this value can be determined by summing the
tests for the first two components (highlighted in bold).
The best result is obtained with an even split of tests,
where Nmin is 2000 and the bound is 1.5 times greater
than the bound derived in Table 7. For the second test
plan, the sum of the two smallest component tests, Nmin,
is 200. In this case the confidence bound is 15 times greater
than the bound derived in Table 7.

Comparing the bounds for an even split of tests on non-
identical components (25) and black-box tests (3), it can
be seen that, for any r oo m structure there is a simple
ratio of bounds, S = m/z, that applies for any confidence
level and any number of tests. Bound scale factors, S, are
shown in Table 9 for some typical r oo m vote structures
containing non-identical components.

Structure m z S (m/z)

1 oo 2 2 2 1.00

2 oo 3 3 2 1.50

2 oo 4 4 3 1.33

3 oo 4 4 2 2.00

Table 9: Confidence bound scale factors: component vs. black-box
(even split of component tests, non-identical components)

In order to match the bound achieved with N tests on
a full black-box system test, majority voted components
with non-identical software would need S.N tests evenly
split between the components. For example, the 2 oo 3
structure would need 1.5N = 4500 component tests rather
than the 3000 tests needed for a black-box.

For 1 oo m structures and all r oo m vote structures
using identical components, S = 1 for any split of compo-
nents tests, i.e. it is as effective as black-box testing.

8.2. Asymmetric Structure Examples

Section 6 showed that for an arbitrary structure func-
tion ϕ(x), an asymmetric test plan can give the best con-
servative confidence bound for the system pfd.

For instance, let us consider the reliability block dia-
gram shown in Figure 6.

Figure 6: Example reliability block diagram

In this structure, there are two minimal cutsets x for
the components: {c1} and {c2, c3}.

Using the procedure described in Section 7.2, Table 10
derives Nmin for these minimal cutsets using three dif-
ferent test plans n that all sum to N = 3000. We also
calculate qu for α = 0.05 (the 95% confidence bound).

x Tests n x · n Nmin qu

1,0,0 2500, 250, 250 2500

0,1,1 2500, 250, 250 500 500 0.006

1,0,0 1000, 1000, 1000 1000 1000 0.003

0,1,1 1000, 1000, 1000 2000

1,0,0 1500, 750, 750 1500 1500 0.002

0,1,1 1500, 750, 750 1500

Table 10: Nmin and qu derived from minimal cutsets for different
test plans

The first test plan is an example where a higher order
cutset determines the system pfd bound because it has the
least combined number of component tests.

The second test plan has an even split of tests between
components. This is optimal for symmetrical structures,
but for the example structure, the third, asymmetrical test
plan (n1 = 1500, n2 = n3 = 750) produces a larger Nmin

value and hence the smallest value for qu. The third test
plan uses the balanced path test plan described in Section
6 where component tests are apportioned based on the
number of minimum length success paths that include the
component (and c1 is present in both success paths).

A further, more extreme, test allocation example can
be shown for the reliability block diagram in Figure 7.

Figure 7: Alternative reliability block diagram

As the minimum length success path only includes c1,
the optimum test plan allocates all N tests to component
c1, i.e. n1 = N and n2 = n3 = 0. In this allocation, the
number of tests in minimal cutsets {c1, c2} and {c1, c3} is
N , so Nmin = N . For N = 3000 and α = 0.05, the upper
confidence bound is:

qu =
ln(1/α)

3000
= 0.001. (33)

This optimized test plan produces a system pfd bound e-
quivalent to testing the whole system with the same num-
ber of tests.

By contrast, with an even allocation of tests, Nmin =
2000 for both cutsets, we could only claim a bound of
qu = 0.0015.
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9. Discussion

9.1. Comparison with Conventional Failure Analysis

The system is modelled using a structure function to
identify the minimal cutsets M , so the system pfd is:

pfd =
∑
x∈M

p(x), (34)

where M is a set of minimal cutsets, and p(x) the failure
probability of cutset x.

This follows the standard approach used in convention-
al hardware analysis (PSA/PRA) [12], but our software
failure model uses a different quantification approach for
the p(x) values.

In an ideal PRA, with known hardware component fail-
ure probabilities, qi, that are independent:

p(x) =
∏

i:xi=1

qi. (35)

In practice, component failures may not be indepen-
dent due common cause failure (CCF) which increases the
cutset failure probability. This dependency can be quanti-
fied by a range of different methods [10, 22, 23, 24] where
some proportion of component failures qi are deemed to be
common with the failures of the other components in the
cutset (e.g. typical Beta factors [10] range between 0.01
and 0.3).

With our software failure model, a minimal cutset rep-
resents a common failure region where the cutset compo-
nents always fail concurrently, i.e. with maximum failure
dependency.

In addition, as zero failures have been observed, there
are no definitive probability values for the individual soft-
ware components, qi, or individual cutsets p(x). As a re-
sult, we are free to make the worst case assignment of
software failure that maximizes the system pfd within the
confidence region constraints.

As a result, the worst case assignment in our model oc-
curs when all p(x) = 0 apart from the minimal cutset with
the smallest total of tests. This is because our model is
seeking a worst case bound estimate rather than a realistic
PRA “best estimate” (where all minimal cutsets make a
quantified contribution).

9.2. Impact of diversity

In hardware reliability modelling, diversity is generally
considered to improve reliability by reducing the likelihood
of common cause failure. For example, diversity in redun-
dant channels is one of the factors taken into account in
IEC 61508 Beta factor estimation [10].

By contrast, in our software reliability bound model,
diversity can increase the system pfd bound. This is be-
cause the use of common software components eliminates
some failure states in the structure function, so reducing
the scope for maximization.

If there was an extra constraint in our model on the
proportions of common and non-common failures for di-
verse components, the system pfd could be reduced. How-
ever it would be difficult to justify the inclusion of this
extra constraint without further research.

9.3. Applicability of the Software Failure Model

The statistical test theory presented in this paper is ap-
plicable to arbitrary structures. For example, it could be
applied to the minimal cutsets generated by conventional
reliability analysis techniques such as fault tree analysis
[25]. The only difference is that, from a software based
perspective, we have to combine component test results
for each cutset, then use the cutset with the smallest com-
bined number of tests to compute the worst case confidence
bound for the software within the system.

The worst case software bound derived using our model
can be combined with a conventional cutset calculation for
hardware failure probabilities.

9.4. Optimization of Component Tests

If there is scope for specifying the component tests in
advance, the test plans can be optimized to minimize the
pfd confidence bound for the overall system. Test plan op-
timization can produce some surprising results for asym-
metrical structures – some components are not tested at
all because greater benefit can be gained by assigning the
tests to other more critical components.

We have identified a minimum optimization perfor-
mance level for test plans that should be attainable for
any structure. We also present two test plan approaches
that meet this criterion. For the example structures used
to illustrate these approaches, the test plans are optimal.
However these approaches are not guaranteed to be opti-
mal for all structures, and further research is needed on
test plan optimization.

10. Summary and Conclusions

This paper considers how statistically realistic tests on
components can be used to infer a confidence bound for
the software within the overall system. This has practi-
cal applications for large complex systems where extensive
black-box testing is infeasible before deployment.

The paper presents a general analytic method for de-
riving a confidence bound for an arbitrary system archi-
tecture from successful tests on individual components.
This is a conservative approximation to the true confidence
bound that can only be solved numerically.

In addition, two sub-optimal test allocation methods
have been devised to optimize the apportionment of com-
ponent tests for a given architecture.

Analytic bound equations are derived for a number of
commonly used architectures and the accuracy of the an-
alytic bound relative to the true bound is illustrated with
numerical examples.

These analyses show that:
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• In order to derive a conservative confidence bound
for the system, there is no need to derive confidence
bounds for individual components or presume inde-
pendence of their failures.

• Component tests can achieve the same confidence
bound as complete black-box system tests for the
following architectures:

– Any 1 out of m vote structure.

– Any r out ofm vote structure composed of iden-
tical components.

In both cases, any split of component tests is allowed.

• In general, the presence of non-identical components
within any structure increases the system pfd bound
relative to an equivalent structure with identical com-
ponents. We showed that:

– For evenly tested, non-identical components in
a voted r out of m structure, the confidence
bound is m/(m − r + 1) times the bound that
can be claimed in a black-box system test.

• An even apportionment of tests across components
is not necessarily the optimal choice for asymmetric
structures. In some cases, the optimal apportion-
ment of tests can be extremely asymmetric (for ex-
ample, some components may not be tested at all).

While the approach has been illustrated using fairly
simple architectures, it can be used in conjunction with
any method that produces minimal cutsets (like fault tree
analysis) to analyse the impact of software-based compo-
nents within the architecture.
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Appendix A. Confidence Bound Approximation

Appendix A.1. Upper bound for qs

To derive an upper bound for qs, we use the known
inequality [26] that:

1− x ≤ exp(−x). (A.1)

It follows that the likelihood of a given set of p values is
bounded by

L(p(·)) ≤ exp

(
−

m∑
i=1

∑
x∈Bm

xinip(x)

)
, (A.2)

which reduces to

L(p(·)) ≤ exp

(
−
∑

x∈Bm

n(x)p(x)

)
, (A.3)

where

n(x) =

m∑
i=1

xini = x · n. (A.4)

This allows us to define an approximate confidence re-
gion:

D1 =

{
p(·) :

∑
x∈Bm

n(x)p(x) ≤ ln(1/α)

}
, (A.5)

such that D0 ⊆ D1. This approximate confidence region
D1 can be used to derive a conservative confidence bound,
qu, for the system pfd

qs ≤ qu = max
p(·)∈D1

(pfd(ϕ,p(·))). (A.6)

Since equation (A.5) is linear, finding the conservative
confidence bound (A.6) is a linear programming problem,
which can be solved with the bin-filling algorithm, report-
ed in [20, 21]:

1. Order the system states x ∈ Bm in terms of decreas-
ing ϕ(x)/n(x) value.

2. While ∑
x∈Bm

n(x)p(x) ≤ ln(1/α) (A.7)

and ∑
x∈Bm

p(x) ≤ 1, (A.8)

assign upper limit to each probability p(x), in turn.

3. For the remaining cutsets, set the p(x) values to 0.

The system state probabilities p(x) are normalized, i.e.∑
x∈Bm

p(x) = 1. (A.9)

As a result, for this particular bin-filling example, only the
“bin” for at most one state can be filled up to 1. It follows
from (A.7) that the confidence bound is determined by the
system failure cutset “bin” that has the smallest combined
number of tests where:

n(w) = min
x∈Bm:ϕ(x)=1

n(x) = Nmin, (A.10)

and

p(w) = min

(
ln(1/α)

n(w)
, 1

)
; (A.11)

p(x) = 0, (∀x) x 6= w, ϕ(x) = 1. (A.12)

Hence

qu = min

(
ln(1/α)

Nmin
, 1

)
. (A.13)
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For the special case where there are several bins w that
have an identical number of tests, it would be possible to
partially fill all these bins, but as equation (A.7) is linear
it makes no difference to the worst case confidence bound
value. As a result, the worst case bound can still be derived
by filling a single bin.

For an additional justification, one can also observe
that system states, corresponding to minimal cutsets are
only corner points of the feasibility polyhedron. In accor-
dance with the theory of linear programming, the extreme
of a linear objective function is always achieved at some
corner point of the feasibility polyhedron. A least test-
ed minimal cutset is a corner point with the maximum
attainable value of the objective function.

Appendix A.2. Lower bound for qs
For some given system state (cutset)

z : z ∈ Bm, ϕ(z) = 1,

let us consider the following distribution2 pz(·):

pz(z) ≥ 0; (A.14)

pz(0) = 1− pz(z); (A.15)

pz(x) = 0, for all x 6= 0 and x 6= z. (A.16)

With this distribution, there is only one probable cutset,
z, and one probable success state, 0, with all other states
being improbable.

For such a distribution, equation (11) implies that
pz(·) ∈ D0 iff

m∏
i=1

(1− zipz(z))
ni =

m∏
i=1

(1− pz(z))
zini

= (1− pz(z))
n(z) ≥ α,

(A.17)

where

n(z) =

m∑
i=1

zini. (A.18)

i.e.

pz(z) ≤ 1− α1/n(z), (A.19)

Thus, if we choose pz(z) = 1− α1/n(z), then

pfd(ϕ,pz(·)) = pz(z) = 1− α1/n(z). (A.20)

and

1− α1/n(z) ≤ qs, (A.21)

i.e. the pfd confidence bound for the whole system is worse
than a pfd confidence bound for any of its cutsets. Hence

qs ≥ 1− α1/Nmin , (A.22)

where Nmin = minz∈Bm:ϕ(z)=1(n(z)).

2The distribution models one of the possible dependencies be-
tween component failures (successes)

Appendix B. Sub-optimal test allocation plans

For complex structures, test plan optimization is need-
ed to ensure the maximum Nmin value is obtained over all
possible cutsets.

This requires a solution for the following integer pro-
gramming problem:

N∗min = maxNmin (B.1)

where

Nmin = min
x∈Bm: ϕ(x)=1

(n · x) (B.2)

under the constraint that:

(1 · n) = N. (B.3)

While it is difficult to provide a formal proof that a
test plan approach for deriving n is optimal for all struc-
tures, we have identified two sub-optimal test plans that
guarantee attainable lower bounds for N∗min.

Let us assume that there are m system components and
the number of components in the shortest success path of
the system is kp.

The set of G shortest success paths can be represented
by a G×m incidence matrix, A, where:

aij = 1 if component i is on success path j,
aij = 0 otherwise.
The attainable bounds for N∗min are derived below for

two sub-optimal test plans.

Appendix B.1. Single Path Test Plan

Let us consider the following test plan. For some short-
est success path j′ in A:

ni = N
aij′

kp
, i = 1..m, (B.4)

Thus, all the tests are allocated uniformly between the
components of a single shortest path.

It is well known that each minimal cutset x contains
at least one component i from a shortest success path.

Hence,

Nmin = (B.5)

min
x∈Bm: ϕ(x)=1

(n · x) ≥ min
ni>0

(ni) =
N

kp

Thus,

N∗min ≥ N/kp. (B.6)

Appendix B.2. Balanced Test Plan

A balanced test plan is based on the full set of G short-
est success paths represented by the G×m incidence ma-
trix, A.
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Let us define a vector g = (g1, g2, . . . , gm)′, where gi is
the number of shortest success paths that include compo-
nent i, i.e.:

gi =

G∑
j=1

aij . (B.7)

and define Gm as the total for all m components, i.e.

Gm =

m∑
i=m

gi =

G∑
j=1

m∑
i=1

aij = kpG. (B.8)

Now let us form a balanced test plan, where:

ni = N
gi
Gm

= N
gi

G · kp
, i = 1..m. (B.9)

One can see that the tests allocated to components, ni,
are based on the proportion of shortest paths that contain
component i. In addition, if all the shortest success paths
1 . . . G have disjoint sets of components, then gi = 1 for
all components (i.e. are only present on one path).

Each cutset x contains at least one component from
each shortest success path. Therefore,

g · x ≥ G0 ≥ G, (B.10)

where

G0 = min
x∈Bm: ϕ(x)=1

(g · x) (B.11)

and for the balanced test plan n

n · x =
N

G · kp
× (g · x) ≥ N ·G0

G · kp
≥ N

kp
. (B.12)

Hence for any structure,

N∗min ≥
N ·G0

G · kp
≥ N

kp
. (B.13)

So the balanced test plan (B.9) has the potential for
an improved bound relative to the single path plan (B.4).
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