
The formal development of a Windows

interface

Tim Clement

Adelard

November 15, 1999

1 Introduction

This paper describes an approach to the use of the formal method VDM

in the design and implementation of Microsoft WindowsTM interfaces. This

approach evolved during the development of Dust-ExpertTM, a Windows-

based system for providing design advice on the prevention and control of

dust explosions, developed for the Health and Safety Executive (HSE) and

now being marketed by the Institution of Chemical Engineers (IChemE).

The approach we have adopted is deliberately conservative: we have

aimed to see how we can take guidance in the design of the system from

the standard Vienna Development Method rather than inventing new lan-

guage constructs or new proof obligations. One advantage of this is that we

can continue to use the tools that are available for supporting the standard

language.

The next section provides some background to the application and some

rationale for the use of formal methods in its development. Section 3 de-

scribes the speci�cation. Section 4 describes the implementation steps and

Section 5 compares our approach with some other formal approaches to in-

terface design. The �nal section summarizes our experience and gives some

metrics for the Dust-Expert project. We shall assume some familiarity

with VDM, at the level that could be obtained from [Jon90].

1

2 Background

A dust explosion occurs when a cloud of �nely divided particles is ignited.

Such clouds, which can be of almost any material capable of oxidation, are

created in many industrial processes. Moving grain or powdered sugar into

a silo can create one, and may also generate enough static electricity to

produce the igniting spark. Dust explosions can produce jets of ame tens

of metres long, and are violent enough to destroy factories and kill workers.

There is a large body of experimental and theoretical work that describes

ways to prevent such explosions, perhaps by �lling the vessels with an inert

atmosphere, or to control the explosion, typically by providing vents in the

plant that will allow it to be directed harmlessly rather than destroying its

container. If the latter method is adopted, then the size of the vents must

be chosen to suit the expected violence of the explosion (which depends on

many factors, particularly the material involved).

The purpose ofDust-Expert is to bring together this widely distributed

knowledge and make it available to plant designers and safety inspectors.

It is clearly a safety-related application and thus requires a safety case to

establish a target for the reliability of the system and provide evidence that

it is achieved. Our analysis of the contribution that errors in Dust-Expert

could make to explosions showed that if fewer than 1 calculation in 700 led

to a dangerous design error, plant designed using it would be safer than the

current UK average. This places the application at safety integrity level (SIL)

2 for demand-driven applications [IEC97]. A dangerous error could result

from Dust-Expert giving an answer for a vent size that was signi�cantly

smaller than it should be (perhaps 10% or more), but not implausibly small.

(A suggested size of 1mm2 would probably be queried by the user.) Program

crashes which do not produce an answer are not dangerous, but would not

satisfy other requirements for reliability and usability.

This is a comparatively modest requirement compared with, say, contin-

uously operating avionics systems which must achieve less than one failure in

one billion hours of operation. In particular, it makes it feasible to provide

statistical evidence that the system achieves its target safety level. [PAM91]

shows that 2300 representative tests performed without error provide 90%

con�dence that the error rate is no more than 1 in 700. However, we need

con�dence that the development process will produce software that will pass

the test: if one error is found it we must complete the 2300 tests and do

another 2300 to achieve the same level of con�dence in addition to the work

2

of correcting the error [LW97]. Nor can we be satis�ed just by achieving a

target failure rate. Safety related systems should be developed to achieve

failure rates that are as low as reasonably practicable (that is, as low as

can be achieved without disproportionate increase in cost). This is usually

referred to as the ALARP principle. Also, should a disaster occur due to a

failure of the system, it is advisable to have the defence that best practice

has been used.

To address these concerns, the development process that we adopted be-

gan with the production of a relatively abstract model of the intended system

in VDM (the speci�cation). The discipline of a formal notation, combined

with the consistency checks in VDM, imposes extra costs at this stage com-

pared with an informal design, but returns bene�ts in uncovering ambiguities

in the requirements and loose ends in the design at an early stage, improv-

ing software quality and hence raising our con�dence that the statistical tests

would be passed. We expected that the use of formal methods would at worst

cost us no more overall, and so their use is mandated by the ALARP prin-

ciple. Also, the relevant standards for safety related systems [IEC97, Def97]

strongly recommend formal approaches at higher SILs, and it would be dif-

�cult to defend not using them at lower levels where they do not add cost.

The next stage of the process was a rigorous development of a VDMmodel

of the implementation. This was then transliterated into Prolog, the target

implementation language. Using Prolog had the advantage of keeping the

implementation at a fairly high level and hence shortening the development

chain. (In fact, there is a single step from original design to implementa-

tion, combining a number of simple development steps.) By separating the

development from the shift in language, we were able to consider two rather

di�erent and potentially tricky steps independently. In the �rst step we ad-

dress the question of whether the new de�nition implements the old within a

single notation (and draw on many standard results in that setting) and in the

second we consider the equivalence of constructs in two di�erent languages.

Throughout the VDM development we used the IFAD VDM toolbox [ELL94]

for syntax and type checking, and the Prolog development was supported by

static analysis for unde�ned and unused predicates and variables.

There is no formal proof in the process. To undertake this rather than

rigorous argument would have imposed substantial extra cost, which did not

seem necessary at our target SIL where the main evidence of safety was to be

statistical. (At higher SILs, a fully formal approach demonstrating absence

of defects would be the only plausible way of establishing the safety of the

3

system.)

The interesting aspect of the arguments for the use of a formal notation

and rigorous development is that they apply just as much to the interface

as they do to the core functions of the system. The correctness of the inter-

face in presenting the results is just as important as the correctness of the

core code in computing them. It will be exercised by the statistical testing.

(One of the attractions of statistical tests is that they include the whole sys-

tem, including the o�-the-shelf components such as the Prolog system and

Windows interface, which formal arguments about the code do not address.)

The interface is complex enough that we can expect to gain reliability and

reduce costs by the detailed consideration of the design at an early stage, and

cannot be con�dent that traditional development techniques would deliver

a suÆciently reliable product. The ALARP principle and the need for best

practice extend throughout the system. We were thus sceptical of the usual

recommendation to restrict the use of formal methods to the core functions

of the system. To extend their use, we needed a way to approach interface

de�nition in VDM, and this is what we shall describe in the rest of the paper.

3 Specifying the interface

As a running example, let us consider a simpli�ed version of the Dust-

Expert interface to calculations of things like vent sizes. In many cases, the

calculations are based on the piecewise �tting of functions to experimental

curves measured under di�erent conditions. Each piece is represented by an

option, which de�nes the function to evaluate and places conditions on its

input variables that de�ne the range of values it covers. A method combines

options to cover an entire set of curves, and may impose further conditions

to de�ne its applicability. There are several ways in which the same value

can be calculated, so methods are combined into groups. To carry out a

calculation, then, we must choose a group and the methods to be used from

within it, and provide values for the input variables of their options. Each

method then selects its �rst applicable option and returns the result it gives.

If the method conditions are not met or no applicable option can be found,

it returns a failure code. The group will return the results for all the chosen

methods.

The abstract model of the core of the system de�nes types for options,

methods and groups. The system state includes mappings from the names

4

of groups, methods and options to their de�nitions. There is a function,

evaluateGroup, which takes a group name and set of method names, to-

gether with a map from variable names to values (a binding), and returns a

map from methods to results. This function can be seen as a de�nition of an

interface, since it says that the system must have the capability of yielding

certain results if given certain inputs.

It is not, however, a user interface that this de�nes. The Windows user

interface for Dust-Expert calculations is shown in Figure 1. It presents

Figure 1: The Dust-Expert user interface for calculations

users with a representation of the input values and the results of the last

calculation on them, if any, and provides operations to edit the variable

values one by one and to recalculate the results, as well as to change the set

of methods. (The group is �xed when the calculation is created.) Because

it allows the input to be built up through a series of actions rather than

presented as a single value, it necessarily has a state. This can be modelled

in VDM as an element of the following type:

5

Feature :: group : Identi�er

methods : Identi�er -set

binding : Identi�er
m

�! Value

results : [Identi�er
m

�! ValueError]

with an invariant that the results are those calculated by evaluateGroup from

the binding when not nil.

We would expect eventually to produce another formalisation of the win-

dow, based on the concrete data types that the Windows user interface sup-

ports. These include character strings in static boxes and edit boxes, and lists

of strings in list boxes. (Our choice of controls will be inuenced by the op-

erations that the user can perform on them.) Our design for Dust-Expert

displays each variable that the group may need as a line in the window. The

variable value is represented as a string. The internal identi�er names are

not very informative, but the system provides a function from variable names

to suitable prompts. To guide the user further, we also display the bounds

on allowable values and the units associated with the variable. The results

map is shown as a list displaying each method and its result. The nil result

is indicated by greying out the display (leaving the previous results visible,

which can be useful). This can be formalised as a cross-product of the se-

quence (result) and a Boolean ag (valid). The group name appears at the

top of the screen. Combining these constructions gives the implementation

FeatureView :: group : Identi�er

display : DisplayLine�

result : Answer �

valid : B

inv-FeatureView(mk-FeatureView(group; display ; result ; -)) 4

fd :name j d 2 elems displayg = groupVariables(group) ^
fr :source j r 2 elems resultg � groupMethods(group)

where we also de�ne

DisplayLine :: name : Identi�er

question : char �

bounds : char �

units : char �

cval : char �

6

Answer :: source : Identi�er

value : char �

This is a slight abstraction of the actual view, where the group is displayed

as a character string, and each Answer is a string where a representation of

the source is concatenated to the value.

Since the user will only see the concrete view, it must accurately represent

the underlying calculation state. This can be achieved by making it a data

rei�cation of that state. We must then consider the relevance of the standard

VDM conditions for data rei�cation to user interfaces. VDM says that there

should be an abstraction function from the rei�cation to the abstract type.

We can de�ne this component by component for the view. To reconstruct the

binding, we parse cval strings to obtain values, and pair them with the names.

The rest of the line is ignored. (Interface design tends to add redundant

information in this way.) If the string is empty, the line is ignored. The

resulting sequence of pairs is then converted to a map: this is a standard

abstraction. The results are abstracted similarly, and abstracting the group

name is trivial.

We observe that there is nothing obvious to derive the methods from.

Technically, this corresponds to a violation of the VDM adequacy condition

for rei�cations, which requires the abstraction function to be surjective. In

a normal data rei�cation, this ensures that every abstract value has a rep-

resentation. In a user interface, it tells us that the whole state is presented

explicitly, a desirable property known as predictability. The obvious way to

present the active methods as is a list of the group methods with the active

ones selected: this is easy for the user to edit to select a new set. This can

be formalised as a sequence of identi�ers with a subset of selected ones, and

the abstraction can be retrieved by throwing away the sequence. (Again,

information has been added to support the user.) The window is already

rather full, but we can split the presentation across screens (by putting the

list of methods in a pop-up dialog, for example) provided we have a way to

make all the screens visible when needed (in this case, the Change methods

button). We can justify not showing the methods to be used on the main

screen on the grounds that the methods last used (almost the same thing)

are shown in the results. Taken together, the two screens are an adequate

representation of the abstract state provided the set of methods in the calcu-

lation is restricted to the group methods and the binding should be restricted

to the group variables. Both conditions are reasonable. Formally, we should

7

have the invariant

inv-Feature(mk-Feature(group;methods; binding ; -)) 4

methods � groupMethods(group) ^

dom binding � groupVariables(group)

VDM also requires the abstraction function to be total. This means that

whatever the user sees has an interpretation as a state of the calculation.

This too is an important aspect of an interface. In this case it raises the

issue of what happens when invalid character strings entered by the user

are parsed to obtain new variable values. The obvious choice is to omit the

variable from the binding. The results are produced by the program rather

than the user, so all strings in this part of the interface should be parseable.

Our intuition that this is enough for the abstraction to be de�ned in every

reachable state is justi�ed formally in [Cle94].

Although the formalisation of the user view can be seen as a rei�cation

of the calculation state, it is not presented in this way in the Dust-Expert

development. (This is why we emphasised the relevance of the rei�cation

conditions to user interface design above.) Rather, the design maintains

both the state of the calculation and the user's view of it. This allows us to

close the view while retaining the calculation, and hence to conserve Win-

dows resources in calculations with many subcalculations. There are other

advantages, too, in this separation of model from view which is common in

object-oriented systems [KP88].

As a consequence, the connection between the internal state and the view

is expressed not as an abstraction function connecting two de�nitions, but as

part of a single de�nition. We can think of it as an invariant, although it is

not, technically, an invariant in the strict sense of VDM for reasons we shall

see. For now, let us consider how the connection should be de�ned. Certainly

the internal state and view are related by the abstraction function described

above, but the link can be tightened. When a view is opened on a calcula-

tion, we expect to de�ne exactly what appears: empty strings for unbound

variable �elds and a particular number of signi�cant �gures for a value, for

example. Applying the abstraction function to the view thus created must

yield the original state if the invariant is to be established. Formally, we have

a presentation function that is an injection of calculation states into views,

and has the abstraction function as an inverse. We would like the view to

show the canonical form of the state de�ned by the presentation function af-

8

ter every operation, because consistent presentations are easier to read. We

thus formalise the connection between calculation state and calculation view

in terms of this rather than the abstraction function. (For Dust-Expert

calculations, the presentation function is only loosely de�ned, to say that a

nil result is presented as a false valid ag, leaving the results list unde�ned.)

The invariants identi�ed on the internal state and view must also hold.

This should be invariant as far as the user is concerned, in that it should

hold between all user operations. It is not an invariant in the VDM sense

because it does not hold between VDM statements, or even between all

operations. We therefore express it as a predicate and add it explicitly to

the preconditions and postconditions of the user interface operations.

This gives us an interesting view of operations. All begin with a user

action on a window. Interacting with an edit box, a list box or other controls

typically changes the value of the control | that is, the state of the view

| before sending a message. This is formalised by de�ning a parameterless

operation which selects a suitable control and makes a suitable change non-

deterministically. For example, consider the e�ect of entering a new value

on a calculation screen. The state of the system supports many of these,

and many underlying calculations, linking views to their models through a

function. (Provided we can open a window on any active calculation, we

have presentability as a property of the whole system.)

state State of

features : FeatureRef
m

�! Feature

fviews : ViewRef
m

�! FeatureView

fvmodel : ViewRef
m

�! FeatureRef

The interface operation is ENTER. We assert that it preserves the invariant.

The user input is simulated by choosing an arbitrary window, variable line

number, and text to update it with.

ENTER: () =) ()

ENTER() �

let fview 2 dom fviews in let

active 2 variableIndices(fview)

in (

let text : chars� in fviews(fview):display(active):cval : = text ;

INVALIDATE FEATURE ANSWER(fvmodel(fview));

CHANGE VALUE (fview ; active)

9

)

pre validState()

post validState();

Once the change to the control has been made, the invariant no longer neces-

sarily holds, so further operations are called, passing the chosen view, control

and similar information through the parameters These operations update the

internal state and view to restore the invariant. In this case, the result is

marked as invalid because it no longer corresponds to the binding.

INVALIDATE FEATURE ANSWER: FeatureRef =) ()

INVALIDATE FEATURE ANSWER(fref) �

(

features(fref):result : = nil;

if fref 2 rng fvmodel then let fview = (fvmodel -1)(fref) in

DISPLAY INVALID FEATURE ANSWER(fref ; fview)

);

The answers must be greyed out on the display, which is achieved by DIS-

PLAY INVALID FEATURE ANSWER. We also need to restore the con-

nection between the displayed values and the internal binding, which is done

by CHANGE VALUE.

CHANGE VALUE : FViewRef � [N1] =) ()

CHANGE VALUE (fview ; active) �
if active 6= nil then (

let fref = fvmodel(fview) in let

text = fviews(fview):display(active):cval ;

name = fviews(fview):display(active):name

in (

if isWhiteSpace(text) then RETRACT BINDING(fref ; name)

else let val = parseValue(text) in

if isError(val) then RETRACT BINDING(fref ; name))

else UPDATE BINDING(fref ; name; val);

DISPLAY FEATURE BINDING(fref ; fview)

)

);

10

Formally, the invariant provides a strong check on the correctness of the op-

eration de�nitions through the obligation to prove satis�ability of the speci-

�cation. (For these explicit operation de�nitions, we can interpret this as a

requirement to show that the explict state change satis�es the postcondition,

given the precondition.) Informally, we can use parts of the abstraction func-

tion to suggest how to interpret the view while updating the state (suggesting

in this case the use of parseValue) and parts of the presentation function to

de�ne how to reect changes in the state by updating the view.

Consideration of one user operation requires some rethinking of the in-

variant. The edit boxes can be altered one character at a time. We do not

particularly want to parse the string and update the binding on each change,

because the intermediate strings do not represent useful values and will not

necessarily be in canonical form. Until we move o� the �eld being edited,

then, we do not want the invariant just developed to hold. We could just

omit any claim that an invariant is satis�ed from the formal de�nition of

the editing operation, but as we have seen the invariant is useful enough to

make it worth preserving. We can weaken it until it holds in this case too

by adding a valid ag to DisplayLine. The string in cval must then be a

reection of the underlying binding only if valid is true. (We expect it to be

false for at most one variable at a time.) To preserve the new invariant, �elds

are marked invalid as they are edited and should be marked valid when the

value is accepted and they are redisplayed. We expect components of the

view to be visible, and we can make this new one apparent by changing the

colour of the text so that the user has a speci�c warning that a value is not

yet accepted by the system.

One �nal aspect of the view that we have not considered is the buttons.

Buttons when pushed send messages, and as we have seen the meanings of

messages are de�ned by parameterless operations. Pushbuttons do nothing

but send messages: they return to their original position when released so the

push represents an event rather than a change of state. Check boxes, radio

buttons and the like do have state that changes and should be modelled

in the view, typically as a Boolean or enumerated type. In addition, all

buttons, like other controls, can be greyed out or hidden completely. For a

pushbutton, this change in state has the e�ect of making the operation it

invokes unavailable. We can model this state as a Boolean in the view, and

the invariant should de�ne how it is derived from the rest of the state of the

system: the condition should reect when the associated operation should

be available. For example, the Change methods button is active only if there

11

is more than one method in the group. In this case, the operation would

be de�ned but pointless for a single method. In other cases, the operation

itself is partial. For example, in the database component of Dust-Expert,

we can only view a selected record if a record has been selected. This can

be expressed as a precondition on the View operation, and the precondition

is then the de�ning condition for the button in the invariant. Then as long

as the invariant holds (which should be whenever a user operation can be

performed) the operation can only be invoked if its precondition holds.

4 Development and implementation

The goal of the implementation step was to go from the speci�cation of the

system, where we emphasised directness of de�nition and made full use of the

expressive power of VDM, to an equivalent VDM de�nition whose elements

have natural counterparts in Prolog. For the most part, this involved replac-

ing the sets and maps of the speci�cation with lists subject to invariants that

elements of sets and members of the domain in maps are not repeated. This

is a standard rei�cation which needs little speci�c justi�cation, although in

some cases replacing iteration over a map domain by iteration over the pairs

in a sequence made the algorithm look rather di�erent. Sets and maps in

the states can normally be left to be implemented as Prolog relations. The

translation of the operations is supported by a library of set operations on

sequences.

A second component of the implementation step was the replacement of

the (relatively few) uses of property-based de�nition by algorithms. The �nal

component, and the only one speci�c to the interface, was the splitting of

the de�nition of the view state into two parts, one (the implicit state) to

be represented by the states of the various controls in the windows, and the

other (the explicit state) to be maintained by the Prolog.

In the previous section, we took the position that the components of the

view state should be visible to the user, since if they carry useful information

this should be manifest. However, we can often �nd exceptions where infor-

mation must be associated with the view but does not need to be presented

because the user can infer it. The name �eld of FeatureView is an example.

It does not need to appear on the actual view, because the prompt text iden-

ti�es more clearly what is to be input. In principle it is unnecessary in the

state, because we could assume that each variable has its own prompt and

12

retrieve the binding from the prompts and cval �elds, but having the name

in the state makes the abstraction function much easier to de�ne.

We may also have data associated with the buttons to parameterise the

operations they invoke. For example, calculation views can contain database

lookup buttons (such as Dust Database in Figure 1), which provide an alter-

native to user entry for obtaining values for variables. A particular database

lookup needs to know which part of the database to use, which variables to

�nd values for, and which database �elds to �nd them in, as well as a caption

to describe the e�ect of the button. This caption will normally indicate the

database used, and the variable prompts in the calculation and the database

should provide the user with the link between the sets of variables. Again,

then, we can manage without showing these values in the view.

It is very convenient to be able to de�ne a calculation view state in the

speci�cation which contains all the data we want, irrespective of whether it

is to be presented, and delay the partitioning to the implementation stage.

Such a split is easily justi�able as a data rei�cation, though establishing

the preservation of presentability needs further arguments like those above.

(In essence, we reconsider adequacy for just the implicit part of the state.)

This formal treatment assumes that it is possible to read values back from

their implicit storage in the view. In most cases this is possible (and eÆcient

enough to be practical), and it is necessary when the user can edit the control.

In many cases we do not actually make use of the assumed capability: we do

not need to read the calculated results back from the screen, for example. In a

few cases where reading back is necessary and not possible or not convenient,

we can duplicate the information in the explicit state, tying together the

values with an invariant.

Prolog, as a relational language, may seem a strange choice as the tar-

get for a translation from VDM, which combines functional and imperative

aspects. Functional languages would seem to o�er a better technical match,

at least to the functional parts, and there are various more or less principled

ways in which they can support state. However, we needed a stable (hence

commercial) language implementation running under Windows and support-

ing the Windows interface, and it was easier to �nd a Prolog implementation

that ful�lled these requirements. (We used LPA Prolog.)

In practice, the conversion from VDM to Prolog is relatively straightfor-

ward. For example, the VDM shown in Figure 2 is the implementation of

the invalidation of the current feature answer, speci�ed earlier in a simpli�ed

form. The details of what the operation does are unimportant: the aim is to

13

compare the VDM with the Prolog of Figure 3. For each VDM construct in

INVALIDATE FEATURE ANSWER: FeatureRef =) ()

INVALIDATE FEATURE ANSWER(fref) �

let binding = features(fref):binding ;

target = features(fref):target ;

answer = features(fref):result ;

chpos = features(fref):chpos

in (

if chpos = len features(fref):history + 1 then

features(fref):history : =

features(fref):history y [mk Result(binding ; target ; answer)];

if chpos 6= nil then (

features(fref):result : = <UNDEFINED>;

features(fref):chpos : = nil;

if fref 2 rng fvmodel then let fview = (fvmodel -1)(fref) in

for i = 1 to historylength do

if fviewHistoryPosition(fview ; i) = chpos then

DISPLAY FEATURE HISTORY SELECTION (fref ; fview ; i ; chpos);

RETRACT BINDING(fref ; target);

ADJUST BINDING FOR METHODS (fref);

modi�ed : = modi�ed [ffeatureCalcRef (fref)g;

if fref 2 rng fvmodel then let fview = (fvmodel -1)(fref) in

DISPLAY INVALID FEATURE ANSWER(fref ; fview)

)

);

Figure 2: The VDM version of INVALIDATE FEATURE ANSWER

the implementation we can de�ne a standard translation. Functions become

predicates with an extra parameter: these will be invoked with this parame-

ter a variable and the others ground terms. Conditionals are translated using

the Prolog P -> Q ; R construct, and case expressions and the various it-

erators are de�ned by subsidiary Prolog predicates of standard forms, using

recursion in the case of the iterators. When we come to translate types, the

typeless nature of Prolog makes it easier to handle VDM's unconventional

union types than it would be in a strongly typed functional language. The

main complication is the need to introduce variables to name intermediate

values explicitly: this, and the lack of any form of local de�nition within a

14

methods view INVALIDATE FEATURE ANSWER(FRef) :-

methods view State features fref binding(FRef, Binding),

methods view State features fref target(FRef, Target),

methods view State features fref result(FRef, Answer),

methods view State features fref chpos(FRef, CHPos),

methods view State features fref history(FRef, History),

length(History, HHLen),

((HHLenP is HHLen + 1, CHPos = HHLen) ->

(append(History,[mk methods view Result(Binding,Target,Answer)],

HistoryP),

modify methods view State features fref at history(FRef,HistoryP))

; true),

(CHPos n= nil ->

(modify methods view State features fref at result(FRef,undefined),

modify methods view State features fref at chpos(FRef,nil),

(methods view State fvmodel(, FRef) ->

(methods view State fvmodel(FView, FRef),

methods view historylength(HLen),

methods view INVALIDATE FEATURE ANSWER for(1,HLen,FRef,

FView,CHPos))

; true),

methods view RETRACT BINDING(FRef, Target),

methods view ADJUST BINDING FOR METHODS(FRef),

methods view featureCalcRef(FRef, CRef),

modify methods view State modified at calc(CRef),

(methods view State fvmodel(, FRef) ->

(methods view State fvmodel(FView, FRef),

methods view DISPLAY INVALID FEATURE ANSWER(FRef,FView))

; true))

; true).

Figure 3: The Prolog version of INVALIDATE FEATURE ANSWER

15

methods view INVALIDATE FEATURE ANSWER for(I,HLen, , ,) :-

I>HLen.

methods view INVALIDATE FEATURE ANSWER for(I,HLen,FRef,

FView,CHPos) :-

I =< HLen,

(methods view fviewHistoryPosition(FView, I, CHPos) ->

methods view DISPLAY FEATURE HISTORY SELECTION(FRef,FView,

I,CHPos)

; true),

IP is I+1,

methods view INVALIDATE FEATURE ANSWER for(IP,HLen,FRef,

FView,CHPos).

Figure 3: The Prolog version of INVALIDATE FEATURE ANSWER (cont)

clause, means that care is needed to avoid introducing variable name clashes.

The result is not elegant Prolog: it makes too little use of pattern match-

ing in clauses. It is not always eÆcient Prolog: observe how the relation

implementing fvmodel is used four times, once to test membership in the

range and once to apply the inverse function each time we determine the

view associated with a calculation. However, it does have a direct correspon-

dence with the VDM.

The most interesting feature of the translation is the handling of state.

For each �eld �eld of each composite type type we de�ne predicates type

�eld(Record, Value) and modify type at �eld(Record, Value, RecordP)

to access and update the record respectively. (These, like all predicates, are

pre�xed by the module name.) For access to the state, we de�ne pred-

icates State comp reference �eld(Ref, Value) and modify State comp

reference at �eld(Ref, Value). These look up and modify the value of the

designated �eld of the calculation or view state mapped to in state compo-

nent comp by reference Ref (usually called reference in the speci�cation).

For the state of the calculation (methods view State features) and the ex-

plicit view state, the maps are implemented as relations and modi�cation

is implemented by retracting the current association between reference and

state value, modifying the state value, and re-asserting the connection. This

is fast enough for the purpose. The implicit state accesses and updates are

implemented by suitable calls to the Windows interface. The exact nature of

16

the state implementation is thus hidden from most of the Prolog code behind

the abstraction of the lookup and assignment of structured variables. Using

VDM rather than Prolog for the design of the system has the great advantage

of a direct treatment of state: the translation of the state de�nition and state

manipulations accounts for most of the increase in code size (about 35%) on

going from VDM to Prolog.

When moving from one language to another, there is always a concern

that an apparently correct translation is not actually correct because of a

subtle di�erence in the semantics of two apparently equivalent notations. In

practice we have encountered relatively few instances of this, perhaps because

the translation only involves the simpler features of the two languages. One of

the problems we did �nd arose in this translation. The expression chpos =

len features(fref):history + 1 is de�ned and false in VDM when chpos is

nil. The naive translation to Prolog is CHPos =:= HHLen + 1, exploiting the

Prolog mathematical comparisons, but this fails because Prolog \typechecks"

the arguments of the =:= relation. The proper typeless translation is HHLenP

is HHLen + 1, CHPos = HLen.

The Windows interface called by the Prolog is provided by a thin layer

of C++ which calls the Microsoft interface library. The VDM provides a

speci�cation for what this must do (it must simulate assignment and lookup)

but the code was not developed rigorously from this. Our justi�cation is that

this property is simple enough to be communicated informally, and that the

implementations are all relatively simple straight-line code. The main area

of doubt was in the exact speci�cation of the Microsoft library, no formal

de�nition of this was available, and developing one would certainly have

imposed a disproportionate cost.

5 Comparison with other work

The tradition of de�ning only the functional core of interactive systems for-

mally may have begun, inadevertently, with [Suf82]. One of the �rst papers

to address user interfaces directly in a model based formal setting is [Bow92],

which provides an abstract model of a small part of the X windows system.

This, however, is essentially a functional description of a software system

which happens to provide windows, rather than the description of the inter-

face aspects of an application.

[SH90] gave an early formal description of interactors as operations acting

17

on a state. Foley and van Dam categorised aspects of interface description as

lexical (to do with the detailed user actions of the interface, such as mouse

clicks), syntactic (to do with the allowable sequences of actions), and seman-

tic (to do with the e�ects of actions): this is described in greater detail in

[Sch92]. The remaining work to be cited builds on this.

[HC96] presents an Object-Z speci�cation of a web browser. It illustrates

the way in which Z-like languages can construct large speci�cations from

small components. (The module mechanism of VDM gives something of the

same e�ect, but with coarser granularity.) The disadvantage of such speci�-

cation by construction is that it does not encourage properties of the system

as a whole to be made explicit as they are by the invariants in the approach

described here. The operations describe the semantics of the interface as

they do in the VDM. CSP is used to describe the syntactic aspects of the

interface, which are also implicit in the preconditions of the operations. The

CSP presentation is more abstract than the implicit de�nition in the same

way that algebraic speci�cations of data types are more abstract than those

of VDM or Z: the de�nition is in terms of the operations themselves rather

than through some model. From the user's perspective, though, the distinc-

tion is between conditions in VDM or Z based on the state, which by design

is shown in the interface, and conditions in CSP based on the past actions,

which are not. The former seem to address more directly the issue of how

the user will know which operations should be available.

The paper most directly concerned with the issues explored here is [DH95].

It too addresses the role of a standard notion of rei�cation (in this case, that

of Z [WD96]) in the de�nition of interfaces and the development of imple-

mentation. Formally the interface de�nition is given separately rather than

combined with the internal state of the system, but this di�erence is less sig-

ni�cant than it might seem, because the Z notion of rei�cation is expressed

as an invariant over a combined speci�cation anyway. More interesting is

that it sees the interface as an abstraction of the speci�cation rather than as

a rei�cation. This appears to be a technique for framing the state to select

just those parts which are to be presented in the interface: in the Dust-

Expert speci�cation this is implicit in the module structure. Treating the

view as an abstraction leads to technical problems when the system and view

are separately re�ned. We have been more explicit about the relation be-

tween the requirements on the invariant and properties of the interface, while

[DH95] considers the wider issues of the user's view of the system as a tool

for performing tasks.

18

There is a general assumption that the lexical details of the interface are

to be abstracted from in the de�nition. Two aspects of the speci�cation

here suggest that this is not always so easy. We found a need to be able

to select a subset of elements from a set to select the active methods. The

most abstract speci�cation of an interactor to achieve this would take the

superset as a parameter and return a subset. If, though, we want to use

multiple selection list boxes in the usual way, we should pass the currently

selected set too: that is, we must at least decide that the abstract interactor

has the ability to show the current selection. We also had a reminder that

even primitive events may have a semantics: editing the value �eld to create

the new value for a variable had to invalidate the results on the screen and

ag the �eld to indicate that it no longer corresponded to the binding.

6 Summary

Dust-Expert is a safety-related system, for which a safety case had to be

produced containing an assessment of the safety integrity level required (SIL

2) and evidence that this was achieved by the �nal system. This evidence

was principally statistical, from post hoc testing, which meant that the de-

velopment process adopted had to be capable of producing software of this

quality. Process quality itself must also be addressed in the safety case. We

therefore adopted a path of rigorous development from an initial, relatively

abstract formal model (the speci�cation) to a Prolog implementation with

a Windows interface (attached via a C++ layer). This paper has described

how the speci�cation and development treated the interface to the system.

Our goal in modelling the interface was not to try to deal formally with

its usability, but rather to address its correctness as a reection of the in-

ternal state of the system. Some calculations have trees of subcalculations

and associated windows �ve levels deep, with information propagating from

the highest to the lowest and vice versa, so this correctness was not a triv-

ial issue. The strategy chosen was the usual one for dealing with evolving

states: we imposed an invariant that would hold between user operations

and de�ne what a correct presentation of an internal state would be. As we

have seen, this essentially describes a function from the internal state to the

presentation. We could then see the user disturbing the invariant by altering

the view and could de�ne operations by asking how the system should act

to restore it.

19

The notion of the view as a rei�cation of the state and the interface-

oriented interpretation of the rei�cation came later, and addressed at least

the basic issues of the usability of the interface. The abstraction function

provided a further guide to how the system should interpret values from the

screen when restoring the invariant.

It is important to be speci�c about what the process did not include. It

began with a model where the requirements could be recorded and design

issues explored without too much implementation detail, rather than an at-

tempt to give an abstract characterization of expert systems, or anything

of that kind. In particular, we (eventually) felt unembarrassed about using

explicit function and operation de�nitions to describe most of the system:

at this level there were rarely advantages in a more implicit approach. The

development is rigorous rather than fully formal, particularly in the trans-

lation from VDM to Prolog, because we believed that this was adequate for

the target SIL.

The completed system contains about 16000 lines of Prolog and 17000

lines of C++, excluding comments. (The C++ may be conceptually simple

but it is quite bulky.) The initial VDM speci�cation was about 12000 lines.

Productivity in terms of lines per day, where the days include all testing,

documentation, and project meetings as well as design and coding e�ort,

was substantially above industry norms for safety-related software. (The

exact �gures are commercially sensitive.) This was despite some reworking

of the speci�cation and implementations as our techniques for handling user

interfaces developed: next time will be quicker. Our belief that the use of

formal methods would be cost-e�ective was thus vindicated. We note that

the productivity in C++ (where no formal speci�cation was involved) was

about twice that for the formal speci�cations plus Prolog. What this means

is unclear. The requirements for the C++ were straightforward (even if their

achievement in Windows was not) while the speci�cation incorporated a large

amount of design work which would have had to be done somehow. We can

perhaps put an upper bound of a factor of two on the cost of the formal

speci�cation to the project.

Statistical and path coverage testing done systematically and indepen-

dently after a period of informal testing revealed 31 faults, or less than one

per thousand lines of code, none of which caused an invalid answer to be

produced. A year of �eld experience has revealed about 10 more faults. All

but two have been classi�ed as minor. About half were in the Prolog and half

in the C++, another statistic that is hard to interpret. (Are formal methods

20

useless, or was the Prolog side of the problem harder to start with?) Most of

the C++ faults are due to unexpected behaviour of the Windows interface.

Half of the Prolog faults were due to mistranslation (including one serious

one a�ecting the security of data). A mechanical translation would thus have

achieved a signi�cant gain in reliability, although at a signi�cant cost. About

one quarter represent design decisions that the users did not like. This leaves

a small residue of problems that more proof at the speci�cation level might

have revealed, although the cost would have been disproportionate to the

gains.

Overall, we believe that the use of formal de�nitions and rigorous trans-

lations throughout the project provided an appropriate balance of reliability

and cost. We would therefore o�er this as an addition to the steadily growing

list of successful industrial applications of formal methods [FME].

References

[Bow92] J. Bowen. X: Why Z? Computer Graphics Forum, 11:221{234,

1992.

[Cle94] T. Clement. Comparing approaches to data rei�cation. In FME'94:

Industrial Bene�ts of Formal Methods, pages 118{133. Springer

Verlag, 1994. LNCS873.

[Def97] Ministry of Defence. Requirements for safety related software in

defence equipment, Def Stan 00-55 2nd edition, 1997.

[DH95] D.J. Duke and M. Harrison. Mapping user requirements to imple-

mentations. Software Engineering Journal, 1:13{20, 1995.

[ELL94] R. Elmstr�m, P. G. Larsen, and P. B. Lassen. The IFAD VDM-

SL toolbox: a practical approach to formal speci�cations. ACM

Sigplan Notices, 29:77{80, 1994.

[FME] FME applications database. At http://www.csr.ncl.ac.uk/-

projects/FME/InfRes/applications.

[HC96] A. Hussey and D. Carrington. Using Object-Z to specify a

web browser interface. Technical Report TR96-06, University of

Queensland, 1996.

21

[IEC97] International Electrotechnical Commission. Functional safety

of electrical/electronic/programmable electronic safety-related sys-

tems, IEC 61508 draft edition, 1997.

[Jon90] C. B. Jones. Systematic Software Development Using VDM.

Prentice-Hall International, 2nd edition, 1990.

[KP88] G. E. Krasner and S. T. Pope. A cookbook for using the model-

view-controller interface paradigm in Smalltalk-80. Journal of Ob-

ject Oriented Programming, 1:26{49, 1988.

[LW97] B. Littlewood and D. Wright. Some conservative stopping rules for

the operational testing of safety critical software. IEEE Transac-

tions on Software Engineering, 23:673{683, 1997.

[PAM91] D. L. Parnas, C. Asmis, and J. Madely. Assessment of safety-

critical software in nuclear power plants. Nuclear Safety, 32:189{

198, 1991.

[Sch92] B. Schneidermann. Designing the user interface: strategies for ef-

fective human-computer interaction. Addison-Wesley, 1992.

[SH90] B. Sufrin and J. He. Speci�cation, analysis and re�nement of in-

teractive processes. In Formal Methods in Human-Computer In-

teraction, pages 153{200. Cambridge University Press, 1990.

[Suf82] B. Sufrin. Formal speci�cation of a display-oriented text editor.

Science of Computer Programming, 1:157{202, 1982.

[WD96] J. Woodcock and J. Davies. Using Z: speci�cation, re�nement and

proof. Prentice Hall, 1996.

22

