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Abstract. The theory developed by Eckhardt and Lee (and later extended by
Littlewood and Miller) utilises the concept of a “difficulty function” to estimate
the expected gain in reliability of fault tolerant architectures based on diverse
programs. The “difficulty function” is the likelihood that a randomly chosen
program will fail for any given input value. To date this has been an abstract
concept that explains why dependent failures are likely to occur. This paper
presents an empirical measurement of the difficulty function based on an
analysis of over six thousand program versions implemented to a common
specification. The study derived a “score function” for each version. It was
found that several different program versions produced identical score
functions, which when analysed, were usually found to be due to common
programming faults. The score functions of the individual versions were
combined to derive an approximation of the difficulty function. For this
particular (relatively simple) problem specification, it was shown that the
difficulty function derived from the program versions was fairly flat, and the
reliability gain from using multi-version programs would be close to that
expected from the independence assumption.

1. Introduction

The concept of using diversely developed programs (N-version programming) to
improve reliability was first proposed by Avizienis [1]. However, experimental
studies of N-version programming showed that the failures of the diverse versions
were not independent, for example [2, 4] showed that common specification faults
existed, and Knight and Leveson [6] demonstrated that failure dependency existed
between diverse implementation faults to a high level of statistical confidence. More
generally, theoretical models of diversity show that dependent failures are likely to
exist for any pair of programs. The most notable models have been developed by
Eckhardt and Lee [5] and Littlewood and Miller [7]. A recent exposition of these
theories can be found in [8]. These models predict that, if the “difficulty” of correct
execution varies with the input value, program versions developed “independently”
will, on average, not fail independently. A key parameter in these models is the
“difficulty function”. This function represents the likelihood that a randomly chosen
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program will fail for any given input scenario (i.e. the probability that the programmer
is more likely to make a mistake handling this particular input scenario).

While there has been considerable theoretical analysis of diversity, and empirical
measurement of reliability improvement, there has been little research on the direct
measurement of the difficulty function. This paper presents an empirical analysis of
many thousands of “independently” developed program versions written to a common
specification in a programming contest. The objectives of the study were:

o to directly measure the failure regions for each program version,

e to examine the underlying causes for faults that lead to similar or identical failure
regions,

¢ to compute the difficulty function by combining the failure region results

e to assess the average reliability improvement of diverse program pairs, and
compare it with the improve expected if the failures were independent.

The focus of this study was on diverse implementation faults. The correctness,

completeness and accuracy of the specification were considered to be outside the

scope of this project. However, specification-related problems were encountered in

the study, and are discussed later in the paper.

In Section 2 of the paper we describe the source of the program versions used in
this study, Section 3 summarises the difficulty function theory, Section 4 describes
the measurements performed on the programs, while Sections 5 and 6 present an
analysis of the results. Sections 7 and 8 discuss the results and draw some preliminary
conclusions.

2. The Programming Contest software resource

In the past, obtaining many independently developed program versions by different
authors to solve a particular problem would have been difficult. However, with wider
use of the Internet, the concept of “programming contests” has evolved. “Contest
Hosts” specify mathematical or logical challenges (specifications) to be solved
programmatically by anyone willing and able to participate. Participants make
submissions of program versions that attempt to satisfy the published specification.
These are then “judged” (usually by some automated test system at the contest site)
and then accepted or rejected.

We established contact with the organiser of one of these sites (the University of
Valladolid) which hosts contest problems for the ACM and additional contest
problems maintained by the University [9]. The organiser supplied over six thousand
program submissions for one of its published problems. The programs varied by
author, country of origin, and programming language. Authors often submitted
several versions in attempting to produce a correct solution to the problem. This
program corpus formed the basis for our research study.

Clearly, there are issues about realism of these programs when compared to “real
world” software development practices, and these issues are discussed in Section 7.
However the availability of so many program versions does allow genuine statistical
studies to be made, and does allow conjectures to be made which can be tested on
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other examples. In addition such conjectures can be evaluated on actual industrial
software and hence have the potential to be extended to a wider class of programs.

3. Probability of failure and the difficulty function

Two of the most well known probability models in this domain, are the Eckhardt and
Lee model [5], and, the Littlewood and Miller extended model [7]. Both models
assume that:

1. Failures of an individual program 7 are deterministic and a program version either
fails or succeeds for each input value x. The failure region of a program 7z can be
represented by a “score” function” a7 x) which produces a zero if the program
succeeds for a given x or a one if it fails.

2. There is randomness due to the development process. This is represented as the
random selection of a program from the set of all possible program versions IT that
can feasibly be developed and/or envisaged. The probability that a particular
version 7z, will be produced is P(7).

3. There is randomness due to the demands in operation. This is represented by the
(random) set of all possible demands X (i.e. inputs and/or states) that can possibly
occur, together with the probability of selection of a given input demand x, P(x).

Using these model assumptions, the average probability of a program version failing

on a given demand is given by the difficulty function, &x), where:

0(x) = Y o(m,x)P(x) (1)

The average probability of failure per demand (pfd) of a randomly chosen single
program version can be computed using the difficulty function and the demand profile
P(x):

E(pfd,) = Y. 6(x)P(x) (2)

The average pfd of randomly chosen pair of program versions (7, 773) taken from two
possible populations A and B is:

E(pfd,) = 3.6 4(x)05 (x)P(x) €)

The Eckhardt and Lee model assumes similar development processes for A and B and
hence identical difficulty functions

E(pfd,) =Y 0(x)*P(x) (4)

where 6(x) is the common difficulty function. If #(x) is constant for all x (i.e. the
difficulty function is “flat”) then, the reliability improvement for a diverse pair will
(on average) satisfy the independence assumption, i.e.:

E(pfd;) = E(pfd,)’ (5)
However if the difficulty function is “bumpy”, it is always the case that:
E(pfdy) > E(pfd,)’ (6)
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If there is a very “spiky” difficulty surface, the diverse program versions tend to
fail on exactly the same inputs. Consequently, diversity is likely to yield little benefit
and pfd, is close to pfd,. If, however, there is a relatively “flat” difficulty surface the
program versions do not tend to fail on the same inputs and hence pfd, is closer to
pfd,” (the independence assumption).

If the populations A and B differ (the Littlewood and Miller model), the
improvement can, in principle, be better that the independence assumption, i.e. when
the “valleys” in 8,(x) coincide with the “hills” in 5(x), it is possible for the expected
pfd, to be less than that predicted by the independence assumption.

4. Experimental study

For our study we selected a relatively simple Contest Host problem. The problem
specified that two inputs, velocity (v) and time (f) had to be used to compute a
displacement or distance (d). The problem had defined integer input ranges. Velocity
v had a defined range of (-100 < v < 100), whilst time ¢ was defined as (0 <7 <200). A
set of 40401 unique values would therefore cover all possible input combinations that
could be submitted for the calculation. However, this was not the entire input domain,
because the problem specification permitted an arbitrary sequence of input lines, each
specifying a new calculation. If all possible sequences of the input pairs (v, ) were
considered, assuming no constraints on sequencing or repetition, the input domain for
the program could be viewed as infinite. However, as each line of input should be
computed independently from every other line, the sequence order should not be
relevant, so the experiment chose to base its analysis on the combination of all
possible values of v and ¢. This can be viewed as a projection of the input domain
(which has a third “sequence” dimension) on to the (v, ¢) plane.

The experiment set up a test harness to apply a sequence of 40401 different values
of v and ¢ to the available versions. The results for each version were recorded and
compared against a selected “oracle” program. The success or failure of each input
could then be determined. Some versions were found to have identical results to
others for all inputs. The identical results were grouped together in “equivalence
classes”.

In terms of the difficulty function theory outlined, each equivalence class was
viewed as a possible program, 7z, taken from the universe of all programs, I1, for that
specification. The record of success/failure for each input value is equivalent to the
score function, o(7, x) for the equivalence class as it represents a binary value for
every point in the input domain, x, indicating whether the result was correct or not.
For the chosen problem, the input domain, x, is a two-dimensional space with axes of
velocity (v) and time (f), and the score function represented the failure region within
that input domain.

P(7) was estimated by taking the ratio of the number of instances in an equivalence
class against the total number of programs in the population. The size of the failure
region was taken to be the proportion of input values that resulted in failure. The
failure regions can be represented two dimensionally on the v, ¢ plane, but it should be
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emphasised that this is only a projection of the overall input domain. It is only
possible to sample the total input domain.

5. Results

The results revealed that the 2529 initial program versions produced by the authors
(the “v1” population) formed 50 equivalence classes. The five most frequent
equivalence classes accounted for approximately 96% of the population. The results
of the analysis are summarised in Table 1.

Table 1. Population v1 equivalence classes (frequent)

Equivalence Number of Size of Failure
Class (77) versions P(m) Region

EC1 1928 0.762 0.000

EC2 201 0.079 1.000

EC3 189 0.075 0.495

EC4 90 0.036 0.999

EC5 27 0.011 0.990

Equivalence class 1 agrees with the oracle program. There are no known faults
associated with this equivalence class result, consequently the size of the failure
region was 0%.

For equivalence class 2, analysis of the programs revealed a range of different
faults resulted in complete failure across the input domain.

For equivalence class 3, failures always occurred for v < 0. This was due to a
specification discrepancy on the Contest Host web site. Two specifications existed on
the site—one in a PDF document, the other on the actual web page. The PDF
specification required a distance (which is always positive) while the web
specification required a displacement which can be positive or negative. The
“displacement” version was judged to be the correct version.

Equivalence class 4, typified those versions that lacked implementation of a loop to
process a sequence of input lines (i.e. only computed the first input line correctly).

For equivalence class 5, inspection of the program versions revealed a variable
declaration fault to be the likely cause.

A similar analysis was performed on the final program version submitted by each
author (the “vFinal” population). The results revealed that of the 2666 final program
versions could be grouped into 34 equivalence classes. The five most frequent
equivalence classes accounted for approximately 98% of the population. The results
of the analysis are summarised in Table 2.
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Table 2. Population vFinal: equivalence classes

Equivalence Number of P(7) Size of Failure
Class (7) versions Region

EC1 2458 0.922 0.000

EC2 70 0.026 1.000

EC3 40 0.015 0.495

EC4 21 0.008 0.999

EC5 13 0.005 0.990

Note that there is some overlap between the “first” and “final” populations as some
authors only submitted one version. It can be seen that the dominant equivalence
classes are the same as in the first version, but the proportions of each equivalence
class have decreased (apart from EC1) presumably because some programs have been

successfully debugged.
Figure 1 shows examples of the less frequent equivalence class failure regions.
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Fig. 1. Failure regions for some of the infrequent equivalence classes
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6. Analysis

The “score functions” and frequency data of the equivalence classes can be combined
to estimate the difficulty function for the specific problem. Note that this is an
approximation to the actual difficulty function which should be an average taken over
the population of all possible programs. It is unlikely that the set of all possible
programs (IT) are limited to the 50 equivalence classes identified in this study.
However, a computation of #(x) based on the known equivalence classes should give
a good approximation to the difficulty function, as 95% (v1) and 97% (vFinal) of the
program versions belonged to four of the most frequently occurring known
equivalence classes so uncertainties in the “tail” of the population of programs will
only have a marginal effect on the difficulty function estimate.

One issue that needed to be considered in the analysis was the effect of the
specification discrepancy. The discrepancy will bias the estimate of implementation
difficulty as equivalence class EC3 might not have occurred if the specification had
been unambiguous. On the other hand, such specification problems might be typical
of the effect of specification ambiguity on the difficulty function. We therefore
calculated the difficulty function in two ways:
¢ including all equivalence classes
o all equivalence classes except EC3 (the adjusted difficulty function).

6.1 Calculation of the difficulty function

For each input value, x, the difficulty function value 6(x) was estimated using
equation (1) and the result for the vl population is shown in Figure 2.
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Fig. 2. Difficulty function for the v1 population
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This calculation assumes that 7is the same as an equivalence class, the score function
(7, x) is the same as the observed failure region and P(7) is the relative frequency of
the equivalence class in the population. Effectively the calculation takes a weighted
average of the individual failure regions in the v1 population.

Note that the difficulty function shown in Figure 2 has not accounted for any bias
introduced by the specification discrepancy and the “step” in difficulty for v<0 is due
to the specification ambiguity.

The probability of failure also decreases for certain “special” values—the velocity
axis v=0, and time axis /=0. This might be expected since an incorrect function of v
and t might well yield the same value as the correct function for these special values
(i.e. a displacement of zero). There is also a low probability value at v=-100, =0
which is due to faults that fail to execute subsequent lines in the input file, and the
first test input value happens to be v=-100, #=0. If the test input values had been
submitted in a random order, this point would have been no more likely to fail than
adjacent points.

It can also be seen that there is a certain amount of “noise” on the two “flat”
regions of the difficulty surface. This is caused by some of the highly complex failure
patterns that exist for some of the infrequent equivalence classes (as illustrated in
Figure 1).

The results were adjusted to account for specification bias by eliminating the
equivalence class EC3 and Figure 3 shows the adjusted difficulty function.
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Fig. 3. Adjusted difficulty function for the v1 population

With the adjustment for specification bias, the difficulty function is now almost “flat”
apart from the “special case” values on the velocity axis, v=0, and time axis, 7=0.

The difficulty functions for the final version populations (adjusted and unadjusted)
are very similar in shapes observed in the vl population. The adjusted vFinal
difficulty function is shown in Figure 4.
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Fig. 4. Adjusted difficulty function for the vFinal population

While the difficulty functions are similar in shape to the vl population difficulty
functions, the mean value of &x) is about one third that of the vl population—mainly
because the vFinal population contains a higher proportion of correct program
versions.

The mean values for&(x) are summarised in the table below.

Table 3. Mean difficulty values for different program populations

Program Mean Value of 4
Population Unadjusted Adjusted

vl 0.186 0.161

vFinal 0.064 0.058

6.2 Expected pfd of a single version and a pair of versions

To compute the pfd for an average program from equation (2), we need to know the
execution profile P(x). This could vary from one application context to another.
However, assuming any input is equally likely, the pfd of a single version is the mean
value of 6, while the dangerous failure rate of a fault-detecting pair, pfd,, given in
equation (4) reduces to the mean of #(x)* averaged over the input space. Note that this
assumes the same difficulty function for both programs, i.e. they are drawn from the
same population (the Eckhardt and Lee assumption [5]).

The expected pfds for a single version and a pair of versions were computed for the
v1 and vFinal program populations (and the adjusted versions). The results are shown
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in the table below and compared with the pfd expected from the independence
assumption (pfdlz).

Table 4. Comparison of expected probability of failure on demand

Program

Population pfd, pfd, pfdy’
v 0.186 0.0361 0.0347
vl adjusted 0.161 0.0260 0.0260
vFinal 0.064 0.0042 0.0041
vFinal adjusted 0.058 0.0033 0.0033

The increase in the pfd of a diverse pair (pfd,) relative to the independence
assumption (pfd,”) was relatively small for all populations, and for the adjusted
populations, the difference between pfd, and the independence assumption is almost
negligible. The worst-case increase relative to the independence assumption was
observed to be 1.04 (for the unadjusted vl population). This is consistent with
expectations, as the difficulty surface was much flatter for the adjusted versions.

7. Discussion

While the results are interesting, we have to be cautious about their applicability to

“real world” programs. Programming contests can provide many thousands of

versions and this is a clear benefit for statistical studies. On the other hand, the results

may be unrepresentative of software development in industry, especially in that:

1. many of the developers are probably amateurs or students rather than professional
developers;

2. the program specifications are not overly complex, so that the programs are not
typical of software developed in industry, and whole classes of faults that arise in
the development of complex software may be missing;

. the development process is different from the processes applied in industry;

4. there is no experimental control over program development, so independence could
be compromised, e.g. by copying other participants’ programs, or by submitting
programs produced collectively by multiple people.

Discussions with the contest organiser suggests that plagiarism is not considered to be

a major issue and, in any case, the main effect of plagiarism of correct versions would

be to increase the number of correct versions slightly. In principle, it should be

feasible to trap programs from different authors that are identical or very similar in
structure.

With regard to programming expertise, the top participants are known to take part
in international programming contests under controlled conditions (in a physical
location rather than on the internet). So it seems that there is a very broad range of
expertise. In future studies we might be able to obtain more information about the
participants so that the level of expertise can be more closely controlled.

The example we have studied is “programming in the small” rather than
“programming in the large”. It is therefore likely that there are classes of “large

(%)
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program” fault, such as integration and interface faults, that will not be present in our
example. In addition the processes used differ from industry practice. However
experience with quite large programs indicates that many of the faults are due to
localised programming errors that remained undetected by industrial verification and
validation phases. So it is likely the errors committed in small contest-derived
programs will also arise in large industrial programs, although we have to recognise
that the set of faults will be incomplete and the relative frequency of the fault classes
is likely to differ.

From the foregoing discussion, it is clear that we cannot make general conclusions
from a single program example. However, the results can suggest hypotheses to be
tested in subsequent experiments. One clear result of this experiment is that the
difficulty surface is quite flat. The specification required a single simple “transfer
function” that applies to the whole of the input domain. One might conjecture that, for
a fixed transfer function, the difficulty would be the same for all input values.
Similarly where the program input domain is divided into sub-domains which have
different transfer functions, we might expect the difficulty to be flat within each sib
domain. If this conjecture is correct, we would expect diverse programs with simple
transfer functions to have reliability improvements close to that predicted by
independent failure assumption. Indeed, diversity may be better suited to simple
functions rather than entire large complex programs. However we emphasise that this
is a conjecture, and more experiments would be needed to test this hypothesis.

It should also be noted the pfd reduction derived in Table 4 is the average
reduction. For a specific pair of program versions it is possible for the actual level of
reduction to vary from zero to complete reduction. A zero reduction case would occur
if a pair of versions from the same equivalence class are selected. Conversely,
complete reduction occurs if an incorrect version is combined with a correct version.
In Table 2, for instance, 92% of versions in the final population are correct so the
chance that a pair of versions will be faulty is (1-0.92)% i.e. 0.64%. It follows that the
chance of a totally fault detecting pair (where at least one version is correct) will
99.36%. Pairs with lower detection performance will be distributed within in the
remaining 0.64% of the population of possible pairs and some of these versions will
behave identically and hence have zero failure detection probability.

Another issue that we did not plan to examine was the impact of specification
problems. However it is apparent that the problem we encountered was a particular
example of specification ambiguity that arises in many projects. This illustrates how
N-version programming can be vulnerable to common specification problems, and the
need for appropriate software engineering strategies to ensure that specifications are
sound.

At a more general level, we have to ask whether such experiments are of practical
relevance to industry. As discussed earlier, the examples we use are not typical as
they are not as complex as industrial software and the development processes differ.
However, the experiments could lead to conjectures that could be tested on
industrially produced software, (such as the assumption of constant difficulty over a
sub-domain). If such conjectures are shown to be applicable to industrial software,
this information could be used to predict, for example, the expected variation in
difficulty over the sub-domains and hence the expected gain from using diverse
software. It has to be recognised that relating the research to industrial software will



12 Julian G W Bentley, Peter G Bishop, Meine van der Meulen

be difficult and, at least initially, is most likely to be applicable to software
implementing relatively simple functions (like smart sensors). We hope to address
this issue in future research.

8. Conclusions and further work

We conclude that:

1. One significant source of failure was the specification. We were able to allow for
the specification discrepancy in our analysis, but it does point to a more general
issue with N-version programming, i.e. that it is vulnerable errors in the
specification, so a sound specification is an essential prerequisite to the deployment
of N-version programming.

2. For this particular example, the difficulty surface was almost flat. This indicates
that there was little variation of difficulty and a significant improvement in
reliability should (on average) be achieved, although the reliability of arbitrary pair
of versions can vary significantly from this average.

We conjecture that for programs with a single simple transfer function over the
whole input domain (like this example), the difficulty function might turn out to be
relatively flat. In that case, reliability improvements close to the assumption of
independent failures may be achievable. However, more experiments would be
needed to test this hypothesis.

There is significant potential for future research on variations in difficulty. The
possibilities include:

1. Variation of difficulty for different sub-populations (e.g. computer language,
author nationality, level of expertise, etc). The extended Littlewood and Miller
theory suggests it is possible to have reliability better than the independence
assumption value. An empirical study could be envisaged, to determine if this is
observed when versions from different populations are combined.

2. Extension to other contest host program examples, and more wide-ranging
experiments to assess conjectures like the flat difficulty conjecture discussed
above.

3. Relating the hypotheses generated in the experiments to industrial examples.
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