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Abstract—It is difficult to demonstrate that safety-critical software is com-
pletely free of dangerous faults. Prior testing can be used to demonstrate that 
the unsafe failure rate is below some bound, but in practice, the bound is not 
low enough to demonstrate the level of safety performance required for critical 
software-based systems like avionics. This paper argues higher levels of safety 
performance can be claimed by taking account of: 1) external mitigation to pre-
vent an accident: 2) the fact that software is corrected once failures are detected 
in operation. A model based on these concepts is developed to derive an upper 
bound on the number of expected failures and accidents under different assump-
tions about fault fixing, diagnosis, repair and accident mitigation. A numerical 
example is used to illustrate the approach. The implications and potential appli-
cations of the theory are discussed. 

Keywords. safety, software defects, software reliability, fault tolerance, fault 
correction. 

1 Introduction 

It is difficult to show that software has an acceptably low dangerous failure rate for a 
safety-critical system. The work of Butler and Finelli [4] and Littlewood and Strigini 
[21] suggests that there is a limit on the rate that can be demonstrated by testing. 
Given the difficulty of testing the software under realistic conditions, it is often 
claimed that this limit is likely to be around 10−4 to 10−5 failures per hour [18]. As 
these tests would typically be completed without any failures, we do not know what 
proportion of the failures are likely to be dangerous, so we have to use the bound 
derived from testing as the upper bound for the dangerous failure rate as well.  

The safety requirement for a software-based system can be far more stringent than 
the bound established by testing the software, e.g. a target of 10−9 per hour for catas-
trophic failures is required for an individual avionics function [12, 13]. The magni-
tude of the gap between the demonstrable failure rate and such targets can be illus-
trated in the following example. With a demonstrable catastrophic failure rate of 
10−4/hr per system, 100 critical systems per aircraft and 5×107 flight hours per year for 
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civil jet airliners world-wide, around 500,000 fatal aircraft accidents could occur 
every year. In practice, statistics on aircraft accidents [2] show that there are around 
40 airliner accidents per year worldwide from all causes (including pilot error). 

It is clear that real avionics systems perform far better than we are entitled to ex-
pect based on testing alone [25], but the actual performance can only be determined 
after the system has been deployed. What we need is a credible argument that would 
convince a regulator that a software-based system is suitable for use in a safety-
critical context before it is deployed in actual operation [11].  

One alternative to empirical test evidence is the claim that compliance to estab-
lished standards for safety-critical software will result in software with a tolerable 
dangerous failure rate. For example, compliance to IEC 61508 Level 4 is linked with 
dangerous system failure rates as low as 10-9/hr [9]. Unfortunately there is very little 
empirical evidence to support such a claim.  

More credibly, it may be possible to support a claim of perfection if the software is 
proved correct using formal methods [8]. In this case any failure rate target, even a 
stringent target like 10-9 per hour, would be achievable and the Probabilistic Safety 
Assessment (PSA) of the overall system could assume the software had a dangerous 
failure rate of zero. In practice however, few systems have been constructed using 
formal proof methods, and even these systems cannot be guaranteed to be fault free 
(e.g. due to errors in requirements or faults in the proof tools [6, 20]). 

Another alternative is a risk-informed based design approach [19] which focuses 
on reducing dangerous failure modes rather than seeking software perfection. Poten-
tially hazardous failure modes are identified and safeguards against these failures are 
included in the design. However there is no guarantee that a hazard-based approach 
will identify all potential hazards in the real-world environment, and a convincing 
safety argument would need to show that the hazard identification is complete. 

Safety assurance can also be achieved by the use of fault tolerance techniques [1], 
[14] like design diversity [22] that mitigates failures from individual software compo-
nents. Software design diversity can reduce the dangerous failure rate of the compos-
ite system as the same failure has to occur in more than one software component be-
fore it becomes dangerous. These techniques have been used in a range of safety-
critical systems [3, 15]. 

It should be noted that all these strategies for producing safe software are vulner-
able to an error in the original specification, i.e. when there is a mismatch between the 
software requirement and the real world need. This unfortunately also limits the po-
tential for accelerated testing of software against the requirement to reduce the dan-
gerous failure rate bound as the tests will omit the same key features of real-world 
behaviour. 

In practice, systems designers use the defence-in-depth principle to mitigate the 
impact of dangerous failures in subsystems [7, 10, 20], for example,  

• A nuclear protection system failure is covered by an independently designed sec-
ondary protection system, manual shutdown and post incident control measures. 

• A flight control system failure is covered by diverse flight controls and pilot inter-
vention. 
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As a result of these strategies, the dangerous failure rate of the system function can be 
lower than that of any individual software component. This can be formalized as: 

 λλ accacc p=  (1) 

where λacc is the accident rate, pacc is the probability that a dangerous subsystem fail-
ure will cause an accident and λ is the bound on the dangerous software failure rate 
established by testing. 

The problem lies in achieving and justifying an appropriate value of pacc. Empirical 
studies of software fault tolerance techniques like design diversity [16, 26] suggest 
that reductions of no more than two orders of magnitude can be achieved, while hu-
man intervention under stress may only result in another order of magnitude reduction 
in the dangerous failure giving a total reduction of 10−3

. If a dangerous failure rate of 
10−4/hr can be demonstrated from actual flight testing, it might be argued that the 
accident rate due to failure of the avionics subsystem is no worse than 10−7/hr, but this 
could still be insufficient to demonstrate the required target (e.g. 10−9/hr for an avion-
ics function). 

In this paper we will present a probabilistic software failure model that can be used 
to claim a lower contribution to the accident rate from dangerous software faults. This 
approach is novel and potentially controversial as it requires certification bodies to 
accept an argument based on a low average risk over the system lifetime, but with the 
possibility of a higher instantaneous risk when the system is first introduced. 

2 Basic Concept 

Software failures need to be handled in a different way to hardware failures because a 
systematic software defect can be fixed—once we know what the problem is, it can be 
removed. In the best case, each software fault need only fail once if it is successfully 
fixed in all instances immediately after failure, so we consider that it is inappropriate 
to use a fixed failure rate for software in a safety justification. We also need to take 
account of the fact that software failures need not be catastrophic (i.e. cause an acci-
dent), because there can be mitigations outside the software-based component. 

In the most basic representation of this idea, we consider the failures caused by a 
single fault in the software (the impact of multiple faults will be considered later).  

Clearly the number of failures that occur before the fault is successfully fixed de-
pends on the probability of diagnosing a fault and then repairing it correctly [24]. In 
the basic model, we make the following assumptions. 

• The conditional probability that a fault is diagnosed when a software failure occurs 
is pdiag. 

• The conditional probability that a fault is repaired correctly after diagnosis is prepair.  
• The success of diagnosis and repair is independent of the number of previous fail-

ures. 
• No further failures can occur in any software instance until the fix attempt has 

finished.  
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Given the independence assumptions made on diagnosis and repair, the probability of 
a fault being successfully fixed after each failure is: 

 repairdiagfix ppp =  (2) 

Given the assumption that no failures can occur during a fix, a simple transition 
model can be used to model the fixing process as illustrated in Fig 1.  

Fail(1) 

OK 
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Fail(2) 

OK 

pfix 

1-pfix 
Fail(3) 

OK 

pfix 

1-pfix 
Fail(n) 

 

Fig. 1. Fault correction model 

So for pfix = 0.5, there is a 50% chance of removing a fault after the first failure; 25% 
after the second failure; and so on. The mean length of this failure sequence, nfail, is: 
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Using a standard result for this geometric series [27], this reduces to: 

 
fix

fail p
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This represents the expected number of failures over an infinite period of time, caused 
by a single software fault operating within the whole fleet of software-based units. If 
there are N faults that cause dangerous failures, then the expected number of fleet 
failures due to these faults is bounded by: 

 
fix

fail p

N
n ≤  (5) 

The other element of the model is based on the fact that safety-related computer-based 
systems typically operate within a fault-tolerant architecture (as discussed earlier). We 
can represent this external mitigation of a dangerous software failure by the probabil-
ity pacc that an accident occurs after a dangerous software failure. 

It follows that the expected number of accidents over the lifetime of the fleet due to 
N dangerous faults is bounded by: 

 
fix

acc
acc p

Np
n ≤  (6) 
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This equation implies that if N<<pfix,/ pacc, the expected number of accidents nacc<<1. 
This represents the case where there is a high probability that all N dangerous faults 
will be diagnosed and removed before the first accident occurs. A value of nacc well 
below unity is effectively equivalent to the probability of an accident over the lifetime 
of the fleet due to failures of the software component.  

Given the assumption that no further software failures occur during a fix attempt, 
the failure rate of the software has no impact on the maximum number of accidents in 
the fleet. This assumption could be satisfied if all failures resulted in an instantaneous 
fix attempt, or more realistically, it could be met if the fleet was grounded immedi-
ately after failure while the fix attempt is made. 

This independence between the upper bound on failure rate and the number of ac-
cidents is particularly useful in cases where the failure rate bound has not been esti-
mated correctly, e.g. due to a flaw in the specification. Such a flaw would invalidate 
any failure rate estimate based on testing, but the accident bound derived from equa-
tion (6) would still be valid provided N included an estimate for dangerous specifica-
tion flaws. This differs from hardware where the instantaneous failure rate is often 
assumed to be constant, so expected accidents always increase with fleet usage. 

3 Impact of Delayed Fixing 

The basic model makes a strong assumption that no further failures will occur after a 
dangerous failure is observed. In many cases however, the fleet containing the soft-
ware components will continue to operate after the failure has occurred. Clearly, if 
repair is delayed, further failures could occur within the fault fixing interval.  

Initially we will consider the case of a single fault (extension to N faults will be 
addressed later). Let us define: 

 
λ as the upper bound on the software failure rate 
∆tfix as the time needed to perform diagnosis and repair 
τ(t) as the total execution time of the software fleet at elapsed time t 
 

We further assume that: 

• No new faults are introduced when the software is fixed. 
• The failure rate bound λ is unchanged if the fix attempt is not successful. 

These assumptions are also quite strong. New faults are known to occur occasionally 
but if the new fault is in the same defective code section, it can be modeled as the 
same fault with a reduced pfix value.  

The second assumption is conservative if the rate actually decreases after a repair 
(e.g. due to a partial fix). An increase in failure rate would not be conservative, but it 
might be argued that the rate is bounded by the execution probability of the faulty 
code section. The assumption that the failure rate is unchanged by unsuccessful fixes 
makes this process mathematically equivalent to fixing a fault with failure rate λ with 
probability pfix at a time ∆tfix after a failure was observed. 
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To estimate the impact of delayed fixing, we first define the time needed before an 
average length failure sequence terminates, tfail, as the value that satisfies the equation: 

 failfail nt =)(λτ  (7) 

From equation (4), this is equivalent to: 

 
fix

fail p
t

1
)( =λτ  (8) 

It can be shown using Jensen’s Inequality [17] that, if the execution time function τ(t) 
is convex (i.e. the gradient is constant or increases over calendar time), the total num-
ber of failures, nfixedl, when the fix delay is included is bounded by:  

 )( fixfailfixed ttn ∆+≤ λτ  (9) 

We now consider a situation where there are N dangerous faults. Most reliability 
models assume the failures of the individual faults occur independently. If this as-
sumption is made, the failure rates sum to λ, but we will take a worst case scenario 
where: 

• The failure rate of each fault is λ. 
• Failures occur simultaneously for N faults. 
• Only one fault can be fixed after a failure. 

In this worst case scenario there will N times more failures than a single fault and the 
failures will occur at the same frequency, λ, as the single fault case. This failure se-
quence is equivalent to having a single fault with a pfix probability that is N times 
worse, i.e. where:  

 
N

p
p fix

fix =′  (10) 

The bound in equation (9) can therefore be generalised to N faults as: 

 )( fixfailfixed ttn ∆+′≤ λτ  (11) 

where: 
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fail p
t

′
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So from equation (10), t′fail has to satisfy the relation: 
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It follows that the worst scale factor k due to delayed fixing, is: 
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The basic principle for scaling the bound is illustrated in Fig 2. Without fixing, the 
expected number of failures increases to infinity. With fixing and no delay, the num-
ber cannot exceed the basic bound, and would take a time t′fail for the bounding num-
ber of failures to occur. With a fix delay, the bound is increased to allow for the addi-
tional failures that can occur in the extra time ∆tfix

 needed for fault repair. 
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Ν /p fix 
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Fig. 2. Effect of fix delay on the expected number of failures 

We can also compare the expected number of failures with fault fixing (nfixed) against 
the expected number without fault fixing, (n unfixed), namely: 

 )( fleetunfixed tn λτ=  (15) 

where tfleet is the calendar time that the software is in operation in the fleet. So the 
failure reduction (and hence accident reduction), r, achieved by fault fixing is: 

 
)(

)(

fleet

fixfail
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t
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r

τ
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≤=  , fleetfixfail ttt <∆+′  (16) 

Application to Demand-based Systems. Equation (6) is directly applicable to any 
demand-based system if the fleet is grounded during a fix attempt. The increase k 
caused by delayed fixing can be calculated for demand-based systems using equations 
(13) and (14) provided we can derive an equivalent failure rate bound λ.  
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For example, if we know there is an average demand rate of d demands per unit of 
execution time and the upper bound on the probability of failure on demand is f (e.g. 
from accelerated testing), the effective failure rate per unit of execution time is: 

 fd=λ  (17) 

4 Theory Applied to an Avionics Example 

To illustrate the potential gains achievable by including fault fixing, we will apply the 
theory to a hypothetical avionics example with the following parameters 

 
 c 10 unit sales per month 
 u 0.6 (fraction of time in use)  
 N 1 
 λ 10−4 failures/ hour  
 pfix 0.1 
 pacc 0.001 
 

Note that the figures used are only estimates, but are considered to be realistic. The 
number of dangerous faults N is taken to be one as we assume thorough levels of 
testing and analysis (especially for the safe-critical portions of the software). The 
assumed failure rate represents a year of realistic flight testing (e.g. in ground based 
tests and actual test flights). The probability of an accident pacc is assumed to be small 
because an aircraft is engineered to tolerate failures of specific components (via 
standby systems, pilot override, etc). The pfix probability is actually the product of 
diagnosis and repair probabilities, i.e. pfix = pdiag⋅prepair. For critical software we expect 
the repair probability achieved by the software support team to be close to unity, so 
pfix is largely determined by the diagnosis probability, which is estimated to be around 
0.1 as any hazardous incidents will occur in-flight, and diagnosis relies on later recon-
struction of events based on in-flight recording data.  

If the fleet is grounded after a dangerous failure, the basic model applies and we 
would expect 10 failures (from equation (3)) and 0.01 accidents (from equation (6)) 
over the fleet lifetime. 

If there is delayed fixing, the k value has to be computed using the execution time 
equation. With a linear growth in the fleet of avionics units at c per month the execu-
tion time function can be shown to be: 

 2

2
)( t

cu
t =τ  (18) 

We can use equations (13) and (14) and the execution time function (18) to com-
pute the scale-up factor k. The impact of different fix delay times (∆tfix) on k and the 
expected number of accidents is shown in Table 1. 
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Table 1. Expected Accidents Over Infinite Time for Different Software Fix Times 

∆tfix (months) k nfixed nacc 

0 1 10 0.010 
1 1.3 13 0.013 
2 1.7 17 0.017 
3 2.1 21 0.021 

 
With a 3 month delay in fixing, the bound on the expected number of fleet accidents 
is only double the number predicted by the basic model (with no fix delay). 

The upper bound on the mean accident rate λacc over the fleet lifetime is:  

 
fleet

acc
acc T

n≤λ  (19) 

where Tfleet is the total execution time of all the avionics units.  
From equation (18), if unit sales continued for 5 years, the total number of operat-

ing hours, Tfleet, is around 1.6×107 hours. So the upper bound on the mean accident 
rate λacc over the fleet lifetime for a 3 month fix delay is: 

 
 λacc ≤ 1.3×10-9 accidents per hour 
 

This bound on the mean accident rate is close to the target of 10−9 accidents per hour 
required in avionics standards [12][13]. The bound could be reduced to less than 10−9 
accidents per hour if a shorter fix delay is used (e.g. 1 month).  

By comparison, if we only relied on external accident mitigation, the bound on the 
mean accident rate would be the same as the initial rate paccλ. For the avionics exam-
ple, the expected rate would be 1×10-7 accidents per hour. 

So for this choice of model parameters, the inclusion of a fault removal model has 
reduced the expected accident rate over the fleet lifetime by two orders of magnitude. 
Clearly the reduction varies with the parameters used. Table 2 shows the accident 
reduction r achieved by fault fixing for different failure rates assuming a 3 month 
delay in fixing and a 5 year operating period. 

Table 2. Accident Reduction for Different Software Failure Rates 

Mean Accidents / hr λ 
(per hr) (no fix) (fix) 

Reduction  
factor r 

10−3 10−6 3.5×10−9 0.0035 
10−4 10−7 1.3×10−9 0.013 
10−5 10−8 0.8×10−9 0.08 

 
It is apparent that the greatest reduction occurs when the software failure rate λ is 
high. This is not surprising as the mean accident rate is relatively stable (regardless of 
λ) when there is fault fixing, but it increases linearly with λ without fault fixing. 
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5 Discussion 

The fault fixing model predicts an upper bound on the total number of software fail-
ures (and associated accidents) over the fleet lifetime. The impact of fault fixing is 
greatest in large fleets where the expected number of failures without fixing would 
greatly exceed the expected number with fault fixing. In the avionics example, the 
claimed accident rate can be two orders of magnitude less than would be predicted 
from testing alone. In particular, once a relatively modest (and demonstrable) level of 
software reliability is achieved, further reductions in failure rate make little difference 
to the ultimate number of failures and accidents.  

This type of probabilistic argument is not currently accepted in safety standards or 
by certification and regulatory bodies. Early users of the system could be placed at 
greater risk if the instantaneous failure rate is close to the limit established by testing. 
However it might be more acceptable as a support to a primary argument such as a 
claim of zero faults in critical portions of the software. The supporting argument 
would be that, even if the claim of zero dangerous faults is invalid, there is high prob-
ability that a software fault never causes any accident over the lifetime of the fleet 
(e.g. 98% in our avionics example). 

If the theory is valid, equation (6) can also be helpful in choosing design trade offs. 
We note that an order of magnitude change in the predicted number of accidents can 
be achieved by an order of magnitude change in either: N, pdiag, or pacc. Knowing the 
contribution of these parameters, design trade-offs can be based on cost and technical 
feasibility. For example, sending extra data to a shared black-box data recorder to 
improve pdiag might be more cost effective than additional effort to reduce N. Alterna-
tively installing a backup system using different technology might double the cost but 
improve pacc by orders of magnitude. 

The theory also shows that the operational context can affect the accident probabil-
ity. Obviously the repair probability pdiag directly affects the number of accidents, and 
we can minimise the scale-up k due to delayed fixing by considering equations (13) 
and (14). For example k might be reduced by decreasing the fix delay time ∆tfix or by 
reducing the growth in usage τ(t) for some trial period. 

To successfully apply the model, evidence will be needed to show that the model 
parameter estimates are either realistic or at least conservative. Values, like N, could 
be derived from past experience with similar systems, (e.g. analysing FAA directives 
[5, 25]) but further research is needed on quantifying the model parameters.  

More generally, the same theory should be applicable to any systematic design 
fault that is amenable to fault fixing such as software security vulnerabilities, hard-
ware design faults or requirements faults.  

6 Summary and Conclusions 

This paper has presented a basic fault-fixing model that shows there is an upper 
bound on the expected number of dangerous software failures if faults are diagnosed 
and fixed. If the fault fixing is immediate, this bound is independent of the software 
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failure rate. When this bound on failures is combined with external failure mitigation, 
there can be a high probability that an accident is never caused by dangerous software 
failure regardless of the size of the fleet using the software-based component. 

We have also presented a refinement of the basic model that allows the bound to be 
increased to allow for a delay in fixing a detected fault. This revised bound is depend-
ent on the software failure rate, but the increase is typically quite small. 

The theory was illustrated by an aircraft avionics example where fault fixing re-
duced the expected number of accidents by around two orders of magnitude over the 
fleet lifetime.  

If the assumptions behind the theory are valid, it could provide an additional means 
of arguing that critical software-based systems are safe prior to deployment even 
though ultra high reliability of the software cannot be demonstrated by prior testing. 

The theory might also be helpful in making design and support trade-offs to mini-
mize the probability of an accident. 

We also suggest that the theory could be applicable to any systematic fault (e.g. in 
requirements, hardware, software or mechanical components).  

Further empirical research is recommended to validate the model assumptions and 
quantify the model parameters.  

Acknowledgments. The author wishes to thank Bev Littlewood, Lorenzo Strigini, 
Andrey Povyakalo and David Wright at the Centre for Software Reliability for their 
constructive comments in the preparation of this paper.  

References 

1. A Avizienis, J-C Laprie, B Randell; C Landwehr, “Basic concepts and taxonomy of de-
pendable and secure computing”, IEEE Transactions on Dependable and Secure Comput-
ing, , Vol. 1, Issue:1, pp. 11–33, Jan.-March 2004. 

2. Boeing, “Statistical Summary of Commercial Jet Airplane Accidents Worldwide Opera-
tions 1959 – 2010”, Aviation Safety, Boeing Commercial Airplanes, Seattle, Washington, 
U.S.A., June 2011. 

3. D Briere and P Traverse, "Airbus A320/A330/A340 electrical flight controls — a family of 
fault-tolerant systems", Proc. 23rd IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-
23), pp. 616-623, June 1993.  

4. RW Butler and GB Finelli, “The infeasibility of quantifying the reliability of life-critical 
real-time software”, IEEE Transactions on Software Engineering, vol. 19, no. 1, pp. 3-12, 
Jan. 1993. 

5. FAA Airworthiness Directive database, 
http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgAD.nsf/MainFrame 

6. PJ Graydon, JC Knight JC and Xiang Yin, “Practical Limits On Software Dependability: A 
Case Study”, 15th International Conference on Reliable Software Technologies – Ada-
Europe, June 2010. 

7. H Hecht and M Hecht, “Software reliability in the system context”, IEEE Transactions on 
Software Engineering. vol. 12, pp. 51-58. Jan. 1986. 

8. MG Hinchey, and JP Bowen 1999. Industrial-strength formal methods in practice. 
Springer Verlag, 1999. 



 12 

9. IEC, Functional safety of electrical/electronic/programmable electronic safety-related sys-
tems, IEC 61508 ed. 2.0, International Electrotechnical Commission, 2010. 

10. INSAG, Defence in Depth in Nuclear Safety, INSAG 10, International Nuclear Safety Ad-
visory Group, 1996. 

11. D Jackson, and M Thomas, Software for dependable systems: sufficient evidence?, Na-
tional Research Council (U.S.). National Academic Press, ISBN 978-0-309-10394-7, 2007. 

12. Joint Airworthiness Authority, Joint Airworthiness Requirements, Part 25: Large Aero-
planes, JAR 25, 1990. 

13. Joint Airworthiness Authority, Advisory Material Joint (AMJ) relating to JAR 25.1309: 
System Design and Analysis, AMJ 25.1309. 1990. 

14. K Kanoun and J-C Laprie, “Dependability modeling and evaluation of software fault-
tolerant systems”, IEEE Transactions on Computers, vol. 39,  no. 4, pp. 504 – 513, 1990. 

15. H. Kantz and C Koza, “The ELEKTRA Railway Signalling-System: Field Experience with 
an Actively Replicated System with Diversity,” 25th IEEE Int. Symposium on Fault-
Tolerant Computing (FTCS-25), pp. 453-458, June 1995. 

16. JC Knight and. NG Leveson, “An empirical study of failure probabilities in multi-version 
software.” in Digest. FTCS-16: Sixteenth Annual Int. Symp. Fault-Tolerant Computing, pp. 
165- 170, July 1986. 

17. SG Krantz, “Jensen's Inequality.” Section 9.1.3 in Handbook of Complex Variables. Bos-
ton, MA: Birkhäuser, p. 118, 1999. 

18. J-C Laprie, “For a product-in-a-process approach to software reliability evaluation”, Third 
International Symposium on Software Reliability Engineering (ISSRE’92), pp. 134 – 139, 
October 1992. 

19. NG Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, MIT Press, 
2012, ISBN 978-0262016629. 

20. B Littlewood and J Rushby, Reasoning about the Reliability of Diverse Two-Channel Sys-
tems in Which One Channel Is "Possibly Perfect”, IEEE Transactions on Software Engi-
neering, Vol.: 38 , No: 5, pp. 1178 – 1194, 2012. 

21. B Littlewood and L Strigini, “Validation of Ultra-High Dependability for Software-based 
Systems”, Communications of the ACM, vol. 36, no. 11, pp.69-80, Nov. 1993. 

22. MT Lyu, Software Fault Tolerance, John Wiley & Sons, Inc. New York, 
SBN:0471950688, 1995. 

23. Radio Technical Commission for Aeronautics, Software Considerations in Airborne Sys-
tems and Equipment Certification, RTCA/DO-178C. Washington, DC: RTCA, Dec. 2011. 

24. C Smidts, “A stochastic model of human errors in software development: impact of repair 
times” Proceedings. 10th International Symposium on Software Reliability Engineering 
(ISSRE’99), pp. 94 – 103, 1999. 

25. M Shooman. “Avionics Software Problem Occurrence Rates”, Seventh International Sym-
posium on Software Reliability Engineering (ISSRE’96), pp. 55-64, 1996. 

26. MJP van der Meulen and MA Revilla, “The Effectiveness of Software Diversity in a Large 
Population of Programs”, IEEE Transactions on Software Engineering, vol. 34, no. 6, pp 
753 – 764, Nov-Dec 2008. 

27. D Zwillinger, CRC Standard Mathematical Tables and Formulae, 31st ed. Boca Raton, 
FL: CRC Press, pp. 630-631, 2003. 

 


