
To appear in Proceedings of ACM Hypertext 2002 (HT’02), June 11-15, 2002, College Park, Maryland, USA

Graphical Notations, Narratives and Persuasion:
a Pliant Systems Approach to Hypertext Tool Design

Luke Emmet & George Cleland
Adelard

Drysdale Building, City University
Northampton Square, London

+44 (0)20 7490 9450

loe@adelard.com, glc@adelard.com

ABSTRACT
The Adelard Safety Case Editor (ASCE) is a hypertext tool for
constructing and reviewing structured arguments. ASCE is used
in the safety industry, and can be used in many other contexts
when graphical presentation can make argument structure,
inference or other dependencies explicit. ASCE supports a rich
hypertext narrative mode for documenting traditional argument
fragments. In this paper we document the motivation for
developing the tool and describe its operation and novel
features. Since usability and technology adoption issues are
critical for software and hypertext tool uptake, our approach
has been to develop a system that is highly usable and
sufficiently “pliant” to support and integrate with a wide range
of working practices and styles. We discuss some industrial
application experience to date, which has informed the design
and is informing future requirements. We draw from this some
of the perhaps not so obvious characteristics of hypertext tools
which are important for successful uptake in practical
environments

Categories and Subject Descriptors
H.5.4 [Information interfaces and presentation]:
Hypertext/Hypermedia – navigation, user issues, The Adelard
Safety Case Editor, ASCE; H.5.2 [Information interfaces and
presentation]: User Interfaces – User-centered design; K.4.1
[Computers and society]: Public Policy Issues – Human safety

General Terms
Documentation, Design, Human Factors, Theory.

Keywords
Hypertext argumentation, graphical notation, safety related
systems, safety cases, Pliant systems, usability, technology
adoption, field experience.

1 INTRODUCTION
In this paper we present our experiences in developing a
hypertext tool which combines graphical notations and
narrative to support the user in constructing, evaluating and
comprehending complex arguments.

The tool called ASCE1 (The Adelard Safety Case Editor) [1], is
being adopted within the Safety Industry, to support safety
cases, which are essentially complex, structured arguments.
Although rooted in argument development for the safety
industry, ASCE has a wide range of applications, ranging from
project management to informal hypertext development.

We provide the historical context for the development of the
tool, followed by an explication of the tool together with its
novel features from a technical and design perspective.

In our user-centred development process, we have sought to
balance the requirements for supporting the development of
rigorous safety arguments with the need to develop a genuinely
flexible and pliant system as far as the user’s experience is
concerned. This raises interesting issues regarding user interface
design and the complementary use of graphical notation and
narrative in hypertext.

1.1 Notations for safety arguments
Modern safety regulation requires safety arguments (known as
safety cases) to be developed and maintained as a primary
means of communicating the safety requirements, safety
management environment and supporting evidence for safety
claims. In the UK, explicit safety cases are required for military
systems, the off-shore oil industry, rail transport, civil aviation
and the nuclear industry. Equivalent requirements can be found
in other industry standards, such as IEC 61508 (which requires
a “functional safety assessment”) [2] and DO 178B [3] for
avionics (which requires an “accomplishment summary”).

A safety argument should [5]:

• make an explicit set of claims about the system

• provide a systematic structure for marshalling the evidence

• provide a set of safety arguments that link the claims to the
evidence

• make clear the assumptions and judgements underlying the
arguments

• provide for different viewpoints and levels of detail

Although safety cases are increasingly accepted and mandated
for assuring critical systems, the traditional means of production
– word processed documents with in-line graphics – has a
number of shortcomings. Traditional applications have to be
severely stretched for safety case development and the resulting
documents are often cumbersome, and can be difficult to

1 Evaluation copies are available for download at:

http://www.adelard.com/software/asce. While ASCE is a
commercial system, Adelard license it to academic institutes
free of charge for non-profit teaching and research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HT’02, June 11-15, 2002, College Park, Maryland, USA.
Copyright 2002 ACM 1-58113-477-0/02/0006…$5.00.

To appear in Proceedings of ACM Hypertext 2002 (HT’02), June 11-15, 2002, College Park, Maryland, USA

construct and review. Moreover, the structure of the safety
argument itself is often lost in the volume of paper produced.

Toulmin developed a conceptual framework and graphical
notation for representing the structure of an argument in the
1950s. Toulmin [6] makes a distinction between “claim or
conclusion whose merits we are seeking to establish” and “the
facts we appeal to as a foundation for the claim”. Together with
the notion of a “warrant” that the facts indeed support the claim,
Toulmin developed the following basic notation:

Data

Warrant

So,
Claim

Figure 1: Toulmin’s graphical argumentation motif

In this way, an argument can be constructed from the following
elements2:

• a claim about a property of the system or some subsystem

• evidence which is used as the basis of the argument

• an argument linking the evidence to the claim, which
explicates how the evidence supports the claim (e.g.
statistical, logical argument etc.)

Since the evidence for a claim can itself be another sub-claim,
or argument fragment, a generic graphical argument structure
allows for hierarchical decomposition, with the general form of
an acyclic graph, since a piece of evidence may support a
number of claims. Cycles are problematic in that there is no
grounded evidence for a cyclic structure, and nodes can be
potentially self-defeating.

Following Toulmin’s approach, more recent notations such as
ASCAD [4], [5] and GSN (Goal Structuring Notation) [8], [9],
with supporting methodologies have been developed for making
arguments in industry. ASCAD uses a “claims-arguments-
evidence” motif for representing argument structure (see
Figure 2); GSN uses a similar “goals-strategies-solutions” form
of construction. Existing hypertext systems that have adopted
elements of Toulmin’s schema include AAA [10] and more
recently Aquanet [11].

Claim

Evidence

Evidence

Inference rule

Inference rule

Argument structure

Subclaim

Figure 2: A generic graphical argument using a “claims-
arguments-evidence” structuring motif

2 This formulation is for arguments supporting claims about

systems. Other domains for rigorous argumentation would
assert claims about that domain. In the limit, Kolb [7]
conceives of tools that could even enable argumentation
about its own structures (“scholarly hypertext”).

1.2 Integrating narrative and graphical
notation into a hypertext argumentation
approach
There are deficiencies in just using plain narrative, or a purely
graphical notation. Pure narrative is critiqued earlier – such
documents can be long, unstructured, and often do not bring out
the implicit argument. Pure graphical notation can demonstrate
links between argument sections and differentiate between
different types of argument components, but without narrative
there is no “meat” against which the soundness of the argument
may be judged.

We propose that a hypertext argument is like software, in that it
is “enacted” through reading the notation in conjunction with
the narrative. At a macro level, a user “reads” and expands the
graphical argument with narrative according to the structure,
thereby recreating an overall narrative/set of utterances for the
hypertext argument (e.g. “this node is the evidence for the
‘design diversity’ argument which supports the main safety
claim”). The graphical notation allows the user to focus on
particular structures and follow threads of supporting evidence.
Similarly to software there can be bugs in the argument (e.g. a
claim may be floating or unsupported, or a piece of evidence
may be invalid). At a micro level, there is a need for standard
narrative so that authors can explicate any necessary details
about the argument, situate it in context, and make use of any
existing narrative.

2 TECHNOLOGY ADOPTION ISSUES
FOR HYPERTEXT SYSTEMS
Graphical hypertext systems exhibit a number of salient features
which commend them as representational forms for complex
information-based working:

• their design can make use of user’s visual memory,
embodying notions of place, closeness, shape colour and
layout

• they provide a familiar form for representation (maps,
flowcharts, graphs, schematic diagrams are common-place)

• simple, yet sufficiently expressive notations can be read as
narrative which eases learnability and comprehension

• an appropriate domain-specific (or problem-specific)
graphical notation can be “tuned” to express a meaningful
set of semantic constructs (ranging from the informal to
the formal [15])

Although a range of systems have been developed [16], [17],
there have been some significant problems in their adoption as a
technology outside of their research contexts. Conklin et al
report that many systems “did not receive sustained use due to
cognitive overheads and representational inflexibility” [14].

2.1 Usability
It is widely recognised that usability issues are critical in the
design and adoption of software and hypertext technologies
[18].

Usability advocates maintain that for systems to be adopted and
meet the users’ needs they must be developed with usability
issues at the forefront of the design philosophy, rather than as
an afterthought. Although software should support the user’s
goals, the interface itself should be “invisible” as far as
possible. Norman [19], [20] refers to this kind of invisibility in
the sense of having a “natural” interface and not occupying any
psychological space. Weiser and Brown [21] suggest for
systems to empower and support the users, application design

To appear in Proceedings of ACM Hypertext 2002 (HT’02), June 11-15, 2002, College Park, Maryland, USA

should allow fluid movement between the “centre” and
“periphery” of the system, enabling local work in a wider
context. For hypertext systems design, this implies the need to
support the user in their comprehension of the wider hypertext
structure in which local content is created together with fluid
transversal mechanisms of those hypertext structures during
authoring and browsing.

2.2 Pliant Systems
One form of general criticism of current software design and
development practices is that the dominant ideology of software
development is based on the belief that software should be
written with all the uses formally characterised before
development. But the system that the user receives is often
overly rigid, not allowing for differences in working style or
flexibility in use.

Henderson and Harris contrast this commonly held approach
with what they call a “Pliant Systems” [22] approach, which
aims to provide deep flexibility and “co-productive” style of
support to the user. They suggest it is as if the current systems
ideology develops systems according to an overly militaristic
organisational model (the system is “locked down”) in
opposition to a market model (“chaos”). Pliant systems exist in
the wide space between these two extreme perspectives.

Although there are not many examples of this approach in
current systems3, Henderson and Harris give an example from a
“classical” organisational system – the bureaucracy –
suggesting that its best invention was of the margin. A margin
provides a place for user input that is outside that which the
system expects – an “unformed” part of the system, providing a
place for user comments, scribbles, notes, caveats and
interpretations. “Post-it” notes play a similar role. Adding
margins to the design of a system is thus a potential solution to
creating more pliant use of rigid technology [22]:

“Put a field called margin, or add to every field the ability
to tag it, the ability to say ‘Here is some more stuff’”.

Another dimension to the Pliant Systems approach is to support
a range of social practices regarding how people invent
terminology and come to agreements on the use of terminology
[22]:

“People will invent terminology, they will come to
agreements on certain kinds of conventions, other things
will be left open and flexible”

This phenomenon is in stark contrast to the usual practice of
software development whereby the “solution” is thought out in
advance, then implemented in software. That people invent
terminology and conventions relates to the experienced
problems of representational inflexibility noted above. A Pliant
System approach aims to honour these essentially social
practices.

These experiences have also been borne out within the
hypertext community; previous experiences in using semantic
and navigational hypertext suggest that users engaged in certain
classes of activity tend to avoid using overt structuring
techniques in favour of more informal interpretations of
collaborative and individual sense-making [23]. The
development of spatial hypertext systems such as VIKI [25] is
one response to these perceived problems of the imposed
constraints that overt formality can impose on users and their

3 Although it can be argued that aspects of the Internet meet

some of the criteria

working processes [24]. In such systems some linkage is left
implicit and exists as an emergent function of spatial
arrangement and properties (e.g. through spatial analysis).

2.3 Workplace integration
Workplace integration is essential for technology adoption.
Although it might be seductive to think of a user spending most
of their time using a novel application, the truth is that most of
the time users are using other, established applications.
Pragmatically, organisations may be unable to adopt any
technology that does not fit into existing day-to-day work
practices.

Hypertext provides a fundamental mechanism for enabling
technology integration – the link – this is necessary but not
sufficient for technology adoption. Other key aspects are:

• Desktop and application integration – users typically
create much content using standard word processing (and
other) desktop applications. Applications need to support
import and export of text and graphics (from fragments to
complete documents), in common formats.

• Open standards – applications should use existing open
standards to lower barriers to long-term use and uptake.
This reduces the risk of technology adoption for the user
by protecting their intellectual investment.

• Internet/Web – in spite of the limitations of the web as
hypertext, hypertext applications must export their
structures for use on the web. Also users need to be able
to link to standard Internet resources from within their
content. This enables the results of hypertext applications
to be widely disseminated, making use of “network
effects” [26].

• Paper – paper is central to organisational and inter-
organisational functioning. Being able to map hypertext
documents on to equivalent printable version for a wide
range of reasons (lack of on screen real estate, attaching
onto an office wall, scribble on, deliver to customers and
management) is a major technology adoption issue.
Hypertext systems should therefore offer alternative
linearisations of their structures for printing purposes.

3 THE ADELARD SAFETY CASE
EDITOR
The Adelard Safety Case Editor (ASCE) is a hypertext tool for
safety argumentation and hypertext development.

We adopted a user-centred design approach focussing initially
on the tasks of safety case development. For us, this was
possible, since we initially developed ASCE to support our own
working practices4. This has ensured the benefit of a tight
feedback loop between design and use; our internal customers
were very much involved as the system evolved. As other users
have adopted ASCE, we have greatly benefited from their use
and feedback (see Section 4).

The design principles we have adopted are as follows:

• Usability – “quiet”, fluid user interface using familiar and
consistent interface metaphors (drag drop, standard
behaviours, familiar menu layouts) fluid moving between

4 Adelard’s core business is in the assurance of dependable

systems, including industrial safety case development and
assessment.

To appear in Proceedings of ACM Hypertext 2002 (HT’02), June 11-15, 2002, College Park, Maryland, USA

centre/periphery, in the dimensions of the system
(graphical, narrative, link traversal).

• Supportive – the system guides the user, and gives a
positive lead in terms of argument creation (meaningful
default link types, argument check). Rather than forcing
the user to create “compliant” structures, the system
supports divergence and subsequent convergence towards
more “desirable” hypertext structures (according to the
interpretation) through the application of hypertext
structure checking (see Section 3.4).

• Pliability – pliant use of notation and technology for less
“formal” system development (see Section 4.2) multiple
schemas and user schema definition (see Section 3.6). User
defined annotation fields and narratives act as a pervasive
pliant “margin”.

ASCE recreates some graphical structuring facilities that have
already been implemented in other systems such as Aquanet
[11]. Experience with Aquanet suggests that users avoided
formal link structuring, preferring to use spatial arrangement of
data to show association and to delimit different parts of the
investigation.

Our experience runs somewhat counter to this. Explicitly typed
nodes and links are crucial in correctly structuring valid
arguments, and are valuable aids to users in correctly
marshalling the components of the argument. This difference
we believe is because the argument structures for safety cases
have a stronger semantics that the type of information the
Aquanet users were working with. Moreover due to a broad
consensus on the need for safety cases, users are fairly well
motivated to use argument structuring devices that are simple to
use.

The use of typing does not unnecessarily constrain ASCE users
however, as is automatically applied during construction, but
may be subsequently broken by users. Network checking can
subsequently advise on where structure type rules are violated.

ASCE augments standard graphical hypertext with a full-
featured narrative editor (see Section 3.5) where users can
construct informal and traditional narrative to augment the
macro-level structure. This annotation space is not controlled
by the system, although if the users add some structure to it, this
can be used as the architecture for embedded link construction.
This approach also means that the user is not overly constrained
by the notation; they can step beyond it with narrative and
standard document structuring to describe richer relationships
and contexts not supported by the plain notation.

To support emergent structure, users can make use of standard
untyped embedded hyperlinks in the body of any narrative
created. These may be shown graphically if desired. Thus an
implicit structure can emerge through references in which users
have not committed themselves to some of the link types.
Subsequently they may add explicit structure to reinforce the
emergent structure, thereby creating an explicit hypertext
semantics.

Furthermore, users are not compelled to take a formal
interpretation of structures they create (e.g. if they turn off the
visual display of node and link types and “abuse” the notation).
This allows for the development of informal hypertexts with
local or even personal interpretations (see Section 4.2).

3.1 Graphical editor
A graphical argument in ASCE is composed of a number of
types of node, connected by directional links. The nodes are
differentiated by shape and colour, the links by colour and

width. Nodes in an ASCE network are created graphically, and
links between them are typed according to the way in which the
nodes support each other.

Users can turn off the display of link and node types for pliant
use. Also, as they become familiar with the shapes and colours
used, they do not need to see the node and link types explicitly
in the display.

Figure 3: ASCE graphical editor showing node and link
types (for the ASCAD notation)

ASCE supports multiple schemas for hypertext development.
This means different schemas can be created according to the
intended use of the tool, described further in Section 3.6. Each
interpretation has its own status fields, check rules and display
rules. These interpretations are abstracted from the tool itself.

ASCE currently supports two interpretation frameworks for
hypertext arguments:

• ASCAD notation (Claims – Arguments – Evidence) [4],
[5] – For example a Claim node might be “a sub-claim of”
a parent Claim node, and an Evidence node would be
“evidence for” an Argument node or another Claim.

• Goal Structuring Notation see [8], [9]. This has a larger
set of nodes, the three key ones (Goal – Strategy –
Solution) roughly correspond to the ASCAD nodes above
(see Figure 8).

Alternatively, users may “abuse” the notation by turning off the
display of node and link types to create hypertexts with a
graphical map and structured documents beneath – useful for
hypertext development generally (see Section 4.2). ASCE
exports networks as HTML (optionally using SVG5) for the

5 Scalable Vector Graphics – an XML standard for vector
graphics. http://www.w3.org/TR/SVG

To appear in Proceedings of ACM Hypertext 2002 (HT’02), June 11-15, 2002, College Park, Maryland, USA

network graphics. ASCE supports cut/copy-paste of structures –
both within and across networks. This enables reuse of content
and argument “patterns” [9], [12].

3.2 Node properties
ASCE defines properties for nodes as user status fields. These
are used formally or informally for process
management/collaboration support/ recording status of network
components. For example the GSN schema for ASCE has the
following properties for each node:

• Requires development – boolean

• Requires instantiation – boolean

• Completed—boolean

• Resourced—text
field

• Risk—ordinal, 0-5

These fields are editable as the network is developed, to track
status of the argument, and to identify areas which require
further work, or which have weak arguments.

3.3 Navigational features
As argument structures grow larger, there is a need to be able to
see the view and navigate the network in different way e.g. to
reduce clutter; to focus on a fragment of an arguments, to
identify the strongest lines of argument etc.

Collapse and expand

ASCE implements a graph collapse/expand mechanism, which
hides and shows fragments of the network according to the
connectivity. The algorithm to hide a sub-graph for a node
hides all and only those nodes that contribute to the currently
selected node (see Figure 4 and Figure 5).

By collapsing a network at key points, the user can hide parts of
the network that are “finished” or “acceptable”, in order to see
outstanding nodes and links. An inverse collapse (see Figure 6)
is also implemented which allows a user to focus on a node and
its relationships by only showing its subgraph (and hiding the
rest of the network).

Zoom and focus zoom

The user can zoom in and out with ease using the zoom slider,
which is always visible. This supports fluid movement between
the centre and the periphery of the current focus area of the
network. Focused zoom ensures that a selected node is always
visible during zoom, so that the user can see its position in a
wider context.

Figure 4: Graphical editor with node selected

Figure 5: Network collapsed away beneath the
 selected node

Figure 6: Inverse collapse – only showing sub-graph beneath
some selected node

Fragment manipulations

Fragments of the graph can be selected for further actions such
as dragging to a new location, forming the basis for a new
“View” (see below), adding to an existing view, copy/pasting to
the current (or another network).

Filtering

The user can interactively graphically filter the current network
by node type and/or link strength. (see Figure 7). This can be
used to show the main “thrust” of an argument. In other
schemas it could hold a different interpretation (e.g. users could
decide to use the link strength to denote criticality).

To appear in Proceedings of ACM Hypertext 2002 (HT’02), June 11-15, 2002, College Park, Maryland, USA

Figure 7: Graphical filtering the network based on node
type and link strength

User Views

A view is a subset of the nodes with a persistent secondary
layout. This is useful for showing and exporting key fragments
of a large argument. It also can be used to simplify the
presentation, navigation, export and printing of subset of nodes.

Figure 8: User view containing a GSN argument fragment

Nodes can be deleted from, or added to, a view, and the view
geometry may be changed to improve presentation, although the
connectivity is the same as the main view. Layout changes made
in a view do not result in any changes to the main network.

3.4 Hypertext structure checking
Rather than forcing the user to create “compliant” structures,
the ASCE supports divergence and subsequent convergence
towards more “desirable” hypertext structures (according to the
current interpretation) through the application of hypertext
structure checking. This can be thought of as “hypertext syntax
validation”, somewhat analogous to syntax checking done by
compilers/interpreters for computer languages. For example the
network can be examined for any claim without supporting
evidence. Also circular arguments can be identified. These
check rules are defined on a per schema basis (see Section 3.6)
and are expressed in XML. Example rules include:

• “floating” claims – claims with no support

• networks having more than one top-level goal

• network circularities – these can be problematic if the user
wants to employ a formal interpretation of the network as
an argument structure

There is also an embedded link check facility to check and
identify that all of the embedded links are valid (i.e. both the
destination node and the sub-heading in the destination node
exist for each link).

Figure 9: Network structure checking for a GSN network

3.5 Node Editor
Each node in an ASCE network has a narrative field which is a
structured document in itself. The HTML based node editor is
simple to use and allows users to import text from standard
desktop applications. It supports text formatting, stylesheets,
images, tables and heading styles to show the logical structure
of the text in the node. This enables the argument to be
correctly exported as a collection of HTML files.

Our concept for the Node Editor was to create an easy to use
text-processing application supporting a useful set of document
formatting functions without overloading the application with
too many unnecessary features. Users can add embedded links
to headings in any node in the network, any URL, or any local
file. Authors can use this deep linking to create fine-grained
hypertexts. Figure 10 and Figure 11 show the act of viewing (or
editing) an embedded link. The user clicks on the embedded
link, and the viewer/browser opens in the current editing
context, enabling the user to select any other heading in any
other node in the network, without switching out of the current
editing mode.

The left-hand pane of the Node Editor contains a representation
of the logical structure of the current node (see Figure 10). This
view has five main functions:

1. to provide an overview of the structure of the node, as
defined by the user. This augments the peripheral view of
the current content during editing in a familiar,
recognisable way.

2. to provide the architecture for fine-grained linking within
the current network. Embedded links may point to any
node, or heading within that node (see Figure 11)

3. to allow for rapid document navigation to specific sections

4. to allow sections of the document to be reordered

5. to cut/copy sections of the document

To appear in Proceedings of ACM Hypertext 2002 (HT’02), June 11-15, 2002, College Park, Maryland, USA

Figure 10: ASCE Node editor

Figure 11: ASCE Node editor showing inline link
viewer/browser widget

3.6 Schema definition
ASCE supports the definition of domain specific schemas to
implement different notations and support for a way of working
with each notation. Schemas are defined in XML and have the
following components:

• Schema Name

• Node definitions – node type, labels, shapes, colours,
default link type, status fields – a collection of user-
defined attributes for nodes

• Link definitions – link type, default direction, display text

• Display rules – visual modifications of the node according
to values of the user status fields

• Check rules – desirable and anomalous structures to be
checked for. Each rule has a severity, guiding those users
who wish to use the check rules in deciding what (if any)
changes should be made

4 EXPERIENCE IN USE
Experience and feedback from the ASCE user community has
strongly driven the development of ASCE’s functionality. In
this and following sections we will provide examples from the
range of applications on which it has been used, and the

improvements to the tool which have come substantially from
customer demand.

4.1 “Proper” use of ASCE
By this we mean use within the original vision for the tool –
developing arguments, usually, but not always, in the
dependability and safety domain – as opposed to use in
different ways or domains which we document later.

• Classical equipment or component safety case
development. This includes developing safety cases for:
tracked vehicles; positioning and navigation systems for
use in military or emergency vehicles; nuclear assay
software; military air traffic control systems.

• Aircraft safety evaluation and justification. The UK
military aircraft sector has a record of using of GSN to
develop and document safety and operational arguments.
ASCE has been used in several projects covering both
fixed- and rotor- wing aircraft.

• Legacy safety evaluation. Increasingly safety analysis has
to be conducted and documented for equipment, systems,
or processes already in use in the field. ASCE has been
used to consolidate existing safety material relating to such
entities (often by hyperlink out to legacy documents), and
to build new safety arguments.

• Argument evaluation. As discussed in the introduction,
safety, and other, arguments are often delivered as text
files which have little explicit structure to their argument.
By “pouring” the text argument into ASCE, one can tease
out the implicit argument, often in the process exposing
weaknesses or areas of concern in the original document.

• Large installation safety case development. ASCE is being
used to develop a safety case template for a major nuclear
facility. This is a hierarchical document with many layers
and component sub-arguments, each of which may
themselves be complex arguments, or may be further
decomposed.

• Standards compliance. We have experimented with several
standards (e.g. IEC 61508, MoD 00-56, UK Railway
Safety Case Assessment Guidelines), and developed
prototype ‘workspaces’ which both encode the standard,
and support documentation of compliance with
requirements of the standard.

4.2 Pliant use of ASCE
Here we document some of the different ways that ASCE has
been used in a pliant way (e.g. by developing alternative
interpretations of the notation). This also illustrates the
flexibility of hypertext systems generally.

• Help systems. The first plaint use of ASCE, was to write
the help system for ASCE using ASCE. The node types are
not used formally, but still provide a structuring facility for
content and an overall map.

• Note taking and brainstorming. ASCE can be used to
create “mind maps” or for general purpose note taking

• Presentations. The user-selected cascading style sheet for
ASCE can reference font style and sizes appropriate for
projection, rather than reading. So ASCE itself, or its
HTML output can be used as a presentation tool.

• Project management. We currently use ASCE to support
our ISO 9001 Management System. While not having the
resource allocation and scheduling capabilities of

Table of
contents for
current node

Embedded link to a
heading in another
node

User clicks on
embedded link

To appear in Proceedings of ACM Hypertext 2002 (HT’02), June 11-15, 2002, College Park, Maryland, USA

traditional project management tools, ASCE complements
these tools well by providing a ‘picture’ of a whole
project, allowing all project documentation from proposal
through deliverables, reviews and progress reports to be
accessed from a single co-ordinating document. Figure 12
shows a snapshot of a project currently in progress. This
shows some of the main deliverables, meeting notes,
review nodes etc, with an approximation of time running
horizontally left to right. HTML export means that
snapshots of a project can easily be shipped to project
workers, clients etc.

Figure 12: Fragment of a “Project Management” ASCE
network.

4.3 The benefit of field experience
Field use has provided much feedback to us on both positive
and negative aspects of ASCE. The original concepts behind
ASCE as evidenced in the first versions have been vindicated –
the tool is capable of expressing rich safety arguments.
However, practical use of ASCE has helped us to understand a
range of improvements which when implemented have
supported effective deployment into existing operational
environments. Some of the improvements we made were strictly
functional, other were to improve the architecture of the system
which has substantially increased our flexibility for future
development.

Multiple schemas

The original ASCAD implementation was directly coded. In
implementing the GSN version, rather than develop a further
coding a schema interpreter was developed. The schemas are
coded in XML, and the underlying code for different schemas is
common. This allows us to develop new schemas as new
application easily and quickly.

Structure checking

As indicated earlier, one of the key usability features of ASCE
is the “pliant” environment where the user can “break” the rules
of the notation being used. This avoids application behaviour
which unreasonably constrains the user, and allows them to
create networks flexibility, and with high productivity. This
flexibility is controlled through checks on the network (see
Section 3.4).

Reconciling hypertext systems with traditional approaches

While the facilities of a hypertext system may appear attractive,
in practice they are not deployed as stand-alone applications.

They usually have to integrate within an existing environment,
which has existing infrastructure, procedures, and reporting and
management structures. Early versions of ASCE, while elegant
stand-alone tools, had some limitations in the quality of
presentation and had primitive printing capabilities. This
inhibited the conveyance of information out of the immediate
field of use. Some considerable effort has gone in to improving
these and similar “cosmetic” features, which, while not
affecting the semantic content can impede the effective
reception of output from the tool.

Status information

In development of a network from first concept to a mature
document, the nodes will evolve through a number of different
states. It is important that the user can record the current state of
a network element, particularly in large networks or where there
may be multiple authors. We have implemented a number of
‘status fields’ for each node which can be used to record
process and project information.

Multiple views on to the data

Users very quickly started generating very large networks, some
with several hundred nodes. While the filter/collapse facilities
described above supported localisation and focussing during
development, presenting the argument as sub-arguments proved
problematic. To solve this we implemented user views and table
views. These are described in detail above, but they supported
the user in analysing the current state of development of their
network, and in presenting the network in manageable
fragments. Figure 8 shows a user view of a GSN fragment.

5 FUTURE DIRECTIONS
With the current release we have a mature product which is
proven in practical use. The next stage is to develop facilities
which will enable use on enterprise wide applications, including
distributed working, and modular safety case development. In
addition we are considering ways of providing stronger
semantic interpretation across networks. This will involve
considerable investigation, including analysis of user processes.
As can be seen from the immediate problems below many of
these issues are general research issues for hypertext systems in
general.

Inheritance and impact analysis

A change in a piece of evidence may invalidate (or at least call
into question) a larger fragment of an argument. We plan a
simple inheritance function for certain type of status. For
example, when a component is changed, its completion status is
flagged as false. This then flags all immediate upstream nodes’
completion status as false. This effect percolates up the tree
until reaching either the top node, or a barrier level.

Browsing and importing data in other applications

We have already implemented the facility to open any arbitrary
accessible document or hyperlink from within an ASCE
network. There is however a need to import more fine-grained
data into arguments. For example a safety case may appeal to
information stored in a separate hazard log application. We plan
to implement a facility to browse certain classes of application
to identify data items or structures, import them to an ASCE
network, and maintain a link to the data source. This will allow
the data element to be updated easily. We will also investigate a
data ageing check where all such accessed items are validated as
current and providing an option to update if not.

Multiple rendered nodes

To appear in Proceedings of ACM Hypertext 2002 (HT’02), June 11-15, 2002, College Park, Maryland, USA

A piece of evidence may be used to justify more than one
branch of an argument (see Figure 4). In simple networks this is
accomplished by having more than one link out from a node.
However, in large arguments this can result in excessive visual
complexity. We plan a facility, perhaps similar to the approach
in Aquanet [23], to support multiple rendering of the same
node. There are difficult design decisions here, concerned with
authority control for editing, and modular argument
development.

Modularity/distributed argument development

While some use of ASCE has been for small arguments
developed by one person. Considerable use has been on large-
scale projects. For example a whole aircraft safety case may
involve 50 person-years of effort spread over a period of 2-3
years. This clearly involves considerable concurrent working,
and subsequent consolidation of material. In practice it also
involves initial high-level argument development, followed by
delegation (and possibly sub-delegation). It is therefore
important to be able to decompose an argument structure,
delegate authority for further development of a fragments, then
re-link those fragments back into the main structure. We have
developed some rudimentary tools to support this (copy/paste,
external link to subsidiary ASCE networks), but these processes
require very close management.

We plan development of more sophisticated facilities to more
easily manage this process. However there are technical and
process complexities that will require detailed analysis before
an acceptable solution will be implemented.

User defined schemas and check rules

These have already been described above as a function we use
for developing new schemas and network checks. However in
their current instantiation they can only be used by experienced
developers. We plan to develop simpler interface to support
user-level definition of schemas and rules.

Formal model

We are developing a formal model of the underlying
representation of schemas. To date the lack of the model has not
been a major problem (apart from some feature interaction
issues between collapse and filter). The only semantic analysis
done so far has been via fairly localised check rules, and their
interpretation with respect to the meaning of the schema is
clear. Future check rules are likely to be more complicated and
less localised, possibly spanning more than one network. Also,
some of the features above such as modularity and inheritance
will require interpreting data or status at one point in a network
and inferring change in data or status elsewhere.

6 CONCLUSIONS
In this paper we have described our experiences in developing a
hypertext tool for argumentation. In our approach we have
sought to address usability and technology adoption issues from
the start, in particular our design approach has aimed to design
ASCE as a pliant system. This means that although designed
primarily to support argumentation, the tool is sufficiently
flexible to support a wide range of working styles and notations.
The support for notation schema definition means that the
utility is wider than the current application to hypertext
argumentation.

The tool itself combines both notational/graphical support with
a structured node editor for narrative creation. Both narrative
and a structuring form are needed for creating and evaluating
complex industrial arguments. We believe we have found a
“sweet spot” in the balancing of more “formal” notation with

structured and unstructured narrative. In part this has been due
to the discovery of notations pitched at a particular level of
abstraction; simple enough to be learnable and applied without
deep technical expertise, yet structured enough to gain the
benefit of creating an explicit structure. Moreover, the system
itself can guide the user in creating and identifying “desirable”
argument structures. This of course moves some of the
responsibility for argument design into the design of the
notations and argument schemas themselves.

In terms of our software development lifecycle, we have felt
great benefit of being a user as well as developer of the system.
This ensures we are addressing real needs and provides internal
motivation for the project. In terms of requirements evolution,
this enables us to achieve tight feedback loops in terms of
usability and functionality as far as real users are concerned.

Having addressed technology adoption issues, we have been
able to benefit greatly from field experience, and learned how
users wish to use such technologies, both in a formal capacity
(to develop better safety arguments) and also in an informal
manner to solve a wider range of day-to-day problems.

As far as our users have been concerned, we have been
occasionally surprised by their focus on “cosmetic” and
presentation issues, but on reflection it is necessary to realise
that a new tool is only on part of a complex chain of flow of
information. What does a user do with their output of such a
tool? Typically, it is passed on in a wider chain of influence and
persuasion; professional looking output is therefore essential.

Looking ahead we see a wide range of potential applications.
Certainly in the field of safety related systems, there will be a
growing need to assure the safety of ever more complex systems
in society. More generally, usable structured hypertext tools can
ensure the adoption of hypertext technologies will occur.

7 ACKNOWLEDGEMENTS
Firstly we acknowledge the contribution of the ASCE team, in
particular Robin Bloomfield, Tim Clement and Sofia Guerra.
We also acknowledge the contribution from the ASCE user
community, in particular Chris Caines. Lastly we would like to
thank the ACM HT2002 reviewers for their helpful comments.

8 REFERENCES
[1] ASCE (Adelard Safety Case Editor) homepage

<http://www.adelard.com/software/asce>

[2] IEC 61508-1, “Functional safety of electrical /
electronic / programmable electronic safety-related
systems CEI/IEC 61508:1998.

[3] RTCA/DO-178B Advisory Circular “Software
Considerations in airborne systems and equipment
certification”

[4] Bishop, P. & Bloomfield, R. A Methodology for Safety
Case Development, Safety-Critical Systems
Symposium, Birmingham, UK, Feb 1998

[5] Adelard (1998) ASCAD—The Adelard Safety Case
Development Manual ISBN 0 9533771 0 5

[6] Toulmin, S.E. (1958) The Uses of Argument,
Cambridge University Press, Cambridge, England.

[7] Kolb, D. Scholarly Hypertext: Self-Represented
Complexity. In Proceedings of The Eighth ACM
Conference on Hypertext, Southampton, 1997, pp. 29-
37

[8] Kelly, T. Arguing Safety A Systematic Approach to
Managing Safety Cases (1998). PhD Thesis, available at

To appear in Proceedings of ACM Hypertext 2002 (HT’02), June 11-15, 2002, College Park, Maryland, USA

<http://www.cs.york.ac.uk/ftpdir/reports/YCST-99-
05.ps.gz>

[9] Kelly, T & McDermid, J, Safety Case Construction and
Reuse using Patterns, Proc 16th Conf on Computer
Safety, Reliability and Security (Safecomp ‘97) 1997

[10] Schuler, W. & Smith, J. Author’s Argumentation
Assistant (AAA): A Hypertext Based Authoring Tool
for Argumentative Texts, ECHT’90

[11] Marshall C., Halasz, F, Rogers R, & Jansen W C.
Aquanet: a hypertext tool to hold your knowledge in
place. In proceedings of Hypertext 91 (San Antonio,
Texas) ACM New York 1991.

[12] Bush, D & Finkelstein, A. Reuse of Safety Case Claims
– An initial investigation. London Communications
Symposium, University College London 10th -11th
September 2001 <http://www.ee.ucl.ac.uk/lcs/
prog01/LCS035.pdf>

[13] Emmet, L. Experiences of using open hypertext to
support safety documentation from: The 5th Workshop
on Open Hypermedia Systems (OHS) <
http://aue.auc.dk/~kock/ OHS-
HT99/Papers/emmet.html>

[14] Conklin, J., Selvin, A. Buckingham-Shum, S, Sierhuis,
M. Facilitated Hypertext for Collective Sensemaking:
15 years on from gIBIS. 11th ACM Conference on
Hypertext and Hypermedia (Hypertext 2001), pp123

[15] Tourlas, K (2001) Diagrammatic Representations in
Domain-Specific Languages. University of Edinburgh,
Dphil Thesis. Available at http://www.dcs.ed.ac.uk/
home/kxt/thesis.ps.gz

[16] Conklin and Begeman, M.L. gIBIS: A Hypertext Tool
for Exploratory Policy Discussion. ACM Transactions
on Office Infromation Systems, 4, 6, 1988, pp. 303-331

[17] Halasz, F.G., Moran, T.P., and Trigg, R.H. (1987)
NoteCards in a Nutshell. In Proceedings of ACM CHI +
GI ‘87, Toronto, Ontario. ACM Press. pp. 45-52.

[18] Nielsen, J. (1993). Usability Engineering. Academic
Press, Boston, ISBN 0-12-518405-0

[19] Norman, D. Making Technology Invisible: A
Conversation with Don Norman. Bergman, Eric
(Editor) (2000) Information Appliances and Beyond:
Morgan Kaufmann (August, 2001 or earlier) Also
available at
<http://www.mkp.com/books_catalog/Ch1txt.htm>

[20] Norman, D. The Invisible Computer (2 October, 1998)
The MIT Press; ISBN: 0262140659

[21] Mark Weiser and John Seely Brown. The Coming Age
of Calm Technology, Revised version of Weiser &
Brown. “Designing Calm Technology”, PowerGrid
Journal, v 1.01, http://powergrid.electriciti.com/1.01
(July 1996). October, 1996.
<http://www.ubiq.com/hypertext/
weiser/acmfuture2endnote.htm>.

[22] Henderson, A. and Harris, J. Beyond Formalisms: The
Art and Science of Designing Pliant Systems. Chapter 4
in: Klaus Kaasgaard Software Design & Usability:
Talks with Bonnie Nardi, Jakob Nielsen, David Smith,
Austin Henderson & Jed Harris, Terry Winograd and
Stephanie Rosenbaum, Copenhagen Business School
Press, October 2000. Also available at
<http://www.pliant.org/Beyond-Formalisms.pdf>

[23] Marshall, C & Rogers, R. Two Years before the Mist:
Experiences with Aquanet. Proceedings of ECHT’92,
Milano

[24] F. Shipman and C. Marshall, "Formality Considered
Harmful: Experiences, Emerging Themes, and
Directions on the Use of Formal Representations in
Interactive Systems", Computer Supported Cooperative
Work (CSCW) , 8, 4 (Fall 1999), pp. 333-352.

[25] Marshall, C & Shipman, F M. VIKI: Spatial Hypertext
Supporting Emergent Structure ACM Hypertext 1994

[26] Whitehead, E.J. Control Choices and Network Effects
in Hypertext Systems, 10th ACM Conference on
Hypertext and Hypermedia (Hypertext 1999)

