
Process Modelling to Support Dependability Arguments

Robin Bloomfield1,2 and Sofia Guerra1

1Adelard, 2CSR City University
Drysdale Building, 10 Northampton Square

London EC1V 0HB, UK
{reb,aslg}@adelard.com

Abstract

This paper reports work to support dependability
arguments about the future reliability of a product
before there is direct empirical evidence. We develop a
method for estimating the number of residual faults at
the time of release from a “barrier model” of the
development process, where in each phase faults are
created or detected. These estimates can be used in a
conservative theory in which a reliability bound can be
obtained or can be used to support arguments of fault
freeness.

We present the work done to demonstrate that the
model can be applied in practice. A company that
develops safety-critical systems provided access to two
projects as well as data over a wide range of past
projects. The software development process as enacted
was determined and we developed a number of
probabilistic process models calibrated with generic
data from the literature and from the company projects.
The predictive power of the various models was
compared.

1. Introduction

There are a number of motivations in developing
models of the software development process such as
process improvement, project management, cost
prediction and reliability prediction. In this paper we
report work that is motivated by the desire to support
dependability arguments about a system. These include
arguments about the future reliability of a product
before there is direct empirical evidence to support the
claim and arguments of fault freeness that to a very
high probability no faults are contained in the product.
Alternatively, we may wish to use the model to assess
other people’s arguments of fitness for purpose when
they have followed standards such as DO178B or
IEC61508.

In [1] we developed a novel theory of reliability
growth modelling that enables conservative long term
predictions and provides the difficult and unusual link
between the development process and long term
reliability. The theory states that (given some
assumptions) a worst case reliability bound can be
obtained from the estimated number of residual faults
at the time of release (N) and the operating time (T).
The expected value of the mean failure rate is bounded
by N/eT, where e is the exponential constant. There are
versions of the model for dealing with problems in
fault reporting and to changes to the software.

This theory shifts the problem of reliability
prediction from estimating reliability directly to one of
estimating the value of N. One method for estimating
N is to perform a detailed analysis of the software
development process. In this method, we develop a
“barrier model” of the development process, where in
each development phase faults are created or detected.
This model is parameterised by the rates of fault
creation and detection at each phase of the software
lifecycle. It can then be used to estimate the number of
residual faults (i.e. those that escape the last barrier).

In this paper we present the work done to
demonstrate that this approach can be applied in
industrial applications. The process modelling
technique has been applied to the software
development process of a company that produces
safety critical products. From the reliability
quantification viewpoint, the main purpose of process
modelling is to estimate the number of residual faults
(N) in the operational system, and hence predict
reliability bounds for the software in field operation.
While the model is indeed conservative, in practice
confidence in the conservativeness of the predictions
will be based on confidence in the model parameters
and the underlying assumptions. A conservative model
does not necessarily give conservative results: a case
by case justification has to be made for the confidence
in the predictions.

2

Req fault rate
R1

Module tests D3

N1

N2

N3

N4

N

Residual faults

Design fault
rate R2

Req review
D1

Coding fault
rate R3

Design
review D2

Integration test D4

Acceptance tests D5

Figure 1: Barrier model

This work augments the qualitative descriptive
analysis of software development processes that might
be produced by applying a Hazop style approach to the
development process. The difference is that we provide
a quantitative analysis of the development process and
seek to justify the results from a statistical analysis of
the process. The method does not rely so heavily on the
use of expert opinion on the efficacy of methods.
Another important difference is that we use the process
as enacted for the modelling, not as described.

The approach described in this paper provides one
solution to the requirements of safety critical standards
to justify the software development process (e.g.
Clause 7.4 of UK Def Stan 00-55). Also in IEC 61508
there are many techniques and measures proposed (See
Part 3 and the normative Annex A) and the standard
accepts that it is not possible to give an algorithm for
combining them. The process modeling approach
provides assistance in justifying the combination of
techniques and the requirement to state them in the
safety plan.

 In this study, the company supplied data from two
projects. The project data was analysed to reconstruct
the software development process. Using this basic
process structure, a range of process models was
developed that were calibrated either with generic
industrial data or detailed project specific data. The
models predict the number of faults at different stages,
which are compared against reported field faults and
industry generic data. Further investigation was carried
out to establish whether fault creation and detection
efficiencies derived from one project could predict the
performance of other projects in the same company.

The paper is organised as follows. Section 2 gives
the background of the work. Section 3 describes the
analysis of the process and data. Section 4 describes
the different models developed, and Section 5 their
results. Section 6 discusses the work and its results.
We conclude in Section 7.

2. Barrier model

Process profiling characterises a software
development process by measuring the fault discovery
both in successive development phases and in
operation. This provides a profile of faults detected at
each phase. Given a database of past project profiles,
the data from a new project can be re-scaled to give
estimates of faults detected in later phases and in
operation. This approach is related to that used in the
Japanese software factory [13], [14] and in projects
that investigated high integrity development processes
using Bayesian Casual Networks [12] and the more
recent work reported in [15].

We have developed a more generic approach where
we construct a “barrier model” of the software
development process. In the barrier model, a
parameterised model is constructed to provide
estimation for the number of residual faults N and to
assess the quality of the development process with
respect to industry norms. A barrier model is
developed where each development stage both
introduces errors of different types (e.g. requirements,
design or code) and includes review or testing to detect
errors. This is illustrated in Figure 1.

The process model can be used to predict the
number of residual faults and the faults detected at
intermediate stages. The data required for the model
are the fault creation rates per 1000 lines of code at
each stage (R1, R2,...) and the detection efficiencies of
the various barriers (D1, D2,…). In practice the
barriers will have different detection efficiencies for
the different types of faults. For example, module
testing should have high detection efficiency for code
faults, lower efficiency for design faults (e.g. spotted
when devising module tests) and an even lower
efficiency for requirements faults. Therefore, a set of
detection efficiencies are used for the different fault
sources, e.g. D1req, D2req D3req..., D2des, D3des, D4des....
etc. The number of faults revealed at each stage is the

3

combined output of these fault streams as they pass
through the barriers, e.g.:

N1 = R1 × D1req

N2 = R1 × (1- D1req) × D2req + R2 × D2des

N3 = R1 × (1- D1req) × (1-D2req) × D3req + R2 × (1-
D2des) × D3des + R3 × D3code

After the final stage there is no further barrier, so
the number of residual faults (per kloc) is the sum of
the different fault streams, attenuated by the sequence
of barriers:

N = ∑ Ri Π (1-D(j)i) (j ≥ i),
where i represents the fault source, j represents a
barrier, Ri is the fault rate of source i, and D(j)i is the
detection efficiency barrier j for faults of type i.

For any new process, the model parameters, D and
R, have to be determined for all project stages. These
can be derived partly by monitoring the process or
using data from similar projects. For a novel project it
may be necessary to make use of generic data for fault
creation and detection. Publicly available industrial
process data was collated to support this aspect of the
study.

Software systems with similar fault densities can
exhibit very different operational reliabilities. This is
taken into account in the use of the conservative bound
for the MTBF: the conservatism can be extreme but in
many cases it is within a factor of 3-10 [1].

There is a balance to be made in the amount of
modelling detail used and the possibility of model
validation. Clearly software development uses a whole
range of skill, rule and knowledge based activities that
are dependent on the individual and the context in
which the work is undertaken. Even if such detailed
models are valid in theory – and many human
performance models are heavily debated – we would
not be able to find sufficient fine data to calibrate and
parameterise them. We side step the problem of such
detailed explanatory modelling by using sufficient
structure to predict the variables of interest and to use
probability density functions that describe the range of
performance which may be seen in practice. This is
somewhat akin to the modelling in the finance sector
where human behaviour is characterised by similar
empirical distributions. Moreover, we are modest in
our ambitions only seeking to make plausible ranges or
bounds on the prediction. For example, in safety
arguments often we only seek figures within an order
of magnitude.

There are a number of tools for implementing such
models. Candidates might be those based on BBNs
such as Hugin [17]. However, given the continuous
nature of the distributions we use and the problems of
validating the conditional node tables in BBN based
models, we opted for the tool Analytica [9]. This tool
allows parameter uncertainty to be expressed as a

probability distribution. Analytica can generate
predictions for the number of faults detected at each
stage, and the proportions of faults from different
sources (requirements, design and coding). The
uncertainty is propagated from the initial parameters
through to results, where the predictions of residual
faults are also represented as probability distributions.

In order to use the model in a specific project it was
necessary to discover the software development
process to obtain the barriers and phases of the model,
and to collect data on creation or detection rates.

3. Process discovery and analysis of fault
data

We looked in detail at two projects from the same
company that we call Project A and Project B. The
projects were dissimilar in both the type of project and
the type of data that was available.

The first project was a small but realistic project to
assess the feasibility of the barrier model approach. It
had the advantage of not reusing any code previously
developed. This allowed the analysis of the project
from the beginning of the development to its current
state without reference to other projects. For example,
it was not necessary to consider problems such as how
many lines of code were new and reused, or whether a
certain fault was generated in the new project or was
inherited from the code reused.

The data provided was extracted from an extensive
database of quality records that document the
development of the system. Although the project was
relatively small (approximately 1500 lines of code), the
extensive database was a result of its high criticality
and the corresponding customer and regulatory
oversight that this project received.

The data provided was mainly development process
data, as no field data was available at the time of this
study. The data encompassed information on the
development process, plans, reviews (requirements,
design and code), time sheets and other technical
documentation including software architecture and
components of the software builds. In addition, they
included records of modifications and their
justifications and details. These modification reports
cover documentation problems, quality problems (e.g.
lack of traceability) as well as functional problems.

The analysis of the data provided had two main
objectives:

• the discovery of the software development
process as enacted and how it differed from the
idealised process initially described
• the extraction of the number of faults found
during the development, the phase of the process in

4

which they were found and the activity that
revealed them
Project B was the third package of a safety-critical

system. By the time of the study, and approximately
four years after the beginning of this project, twenty-
one versions of the software had been developed. In a
total of 12 500 significant lines of code, approximately
2500 lines were new, while the remaining code was
reused from the previous two packages. These posed
problems that were not relevant for Project A: it was
necessary to distinguish whether faults were relevant
for this study or were originated in the previously
developed code.

The type of data supplied for Project B consisted of
an electronic database of modification requests. The
format of data for this project was more tractable than
for the previous. However, for commercial reasons,
further information could not be given. Although
modelling of this project was performed, it was
difficult to carry out full analysis without the support
of the development team. In this paper we mainly
report on the work done for Project A. Predictions for
Project B using Project A rates are discussed in Section
5. The remainder of this section reports on Project A.

3.1. Process discovery

Initial analysis of the data was performed for the
elicitation of the development process. The software
development plan of the project described a modified
form of the waterfall model. Further analysis of the
project documentation and meetings with the
development team informed the refinement of the

initial model of the development process. We used a
visualisation technique to provide a clear outline of the
actual process (see Figure 2). In this technique,
different tasks and documents produced during the
software development are categorised according to the
different phases of the lifecycle. Using the dates of the
documents produced and representing the information
graphically provides a clear overview of the process.

Although the phases of the process overlap, the
shape of the diagram suggested two iterations of the
lifecycle. These two full iterations of the lifecycle were
confirmed with the project team: there were two main
software builds that followed all the phases of the
development process and were delivered to the client.
The second of these builds was a result of substantial
requirements changes requested by the client. This
entailed a large number of changes; approximately
70% of the code was modified. The model includes
two repetitions of the waterfall model, as illustrated in
Figure 3. This structure is the basis for the barrier
model developed for this project.

3.2. Analysis of fault data

The project development documents were further
analysed to extract the rates of fault creation and
detection of the software. Manual analysis of these
documents was performed in order to trace the source
of the findings, to see where errors were created and
how they propagated through the lifecycle until their
detection. It was also necessary to understand the type
of modification described, and whether it was an error
or simply a quality problem. The manual analysis

Requirements changesSoftware construction activities

year 1 year 2 year 3
8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9

Software Development Planning
Requirements
Requirements Review
Design
Design Review
Coding
Test Readiness Review
Software Verification/Validation
Verification and Validation Review
Software Certification

Test definition
Test software code
Test HW/SW integration
Static analysis
SAT testing and results
Code review

Fault detection activities

Figure 2: Visualisation of process activities

5

Figure 3: Two iterations
of the lifecycle

resulted in the classification of each of the findings
according to:

1. the type of problem
2. the detection method
3. the type of modification involved
The type of problem corresponds to the activity

being performed when the error was generated, and
hence to the phase of the development process where
the problem was originated. In this case, the type of
problem is requirement, design or code.

The detection method classifies the finding
according to how it was detected, i.e. each detection
method corresponds to one of the filters of the barrier
model, and it includes:

• reviews: requirements review, design review
and code review
• testing
• static analysis
The final classification criterion of the findings is

the type of modification. The findings are classified in
three main categories according to whether they
corresponded to error correction, implementation of
requirement
change or quality
improvement.
Naturally, error
correction is the
only type of
modification that
was considered to
be a fault. Most of
the modifications
reported, however,
resulted from
improvement of
documentation
(e.g. traceability,
clarification of
some figures in the documents) and from changes of
the requirements.

The analysis of the documents was also used to
identify the model barriers, i.e. the activities or
methods that were used to detect faults of the different
types. The basic barriers are identified in the software
development plan, but knowledge of the process was
refined by the information obtained from the project
development documents.

4. Types of models

In this section we describe several models of the
process that were developed. In these models, we
varied the fault detection efficiencies and creation rates
in order to study the impact of these variations in the
number of faults to field predicted. In addition, two

alternatives of the structure of the process were
explored: one where the two iterations of the process
are followed sequentially (as in Figure 3), and other
where the two iterations are independent and parallel
(see Figure 6). The alternatives considered are
explained in the following subsections.

The variations make the models more or less fitted
to the specific project data. Naturally, fitted models
bring the predictions closer to the actual project data.

4.1. Detection rates

We explored a wide range of data sets on the
development process in order to establish typical
values for detection efficiency. The sets we have
examined are:

• high quality data from software experiments
developing critical software (PODS1 [10] and
PODS2 [11]) and from a real industrial project, the
French SPIN1 reactor protection system
documented in considerable detail in [5]
• more generic data from the NASA Software
Engineering Laboratory [6], data from SEI and
DACS [7], classic data on inspections [4] and the
Cleanroom approach [8] and general literature on
defect densities [2] and those reviewed in [16]
We have excluded requirements errors from this

analysis, since this was not available in most of the
data sets. We would expect detection efficiencies for a
given technique used in a barrier to be similar across
projects, but there will be considerable variations due
to the human nature of the task and problem difficulty.
This is captured by the use of probability distributions
for the detection rates. This also applies to the fault
creation rates.

We note that there are doubts about the quality of
reporting in the industrial projects such as:

• when the data collection was started
• how faults are classified
• the completeness of the data

The third point is illustrated by the software
experiments where a greater fault rate was found.

The analyses of the projects above give generic
detection efficiencies. In order to develop a more fitted
model, detailed project data was used to calculate
review efficiencies. A simple upper bound on the
review efficiencies can be calculated from the ratio of
the faults found in a phase to the total faults found in
the phase and all later phases. This is an upper bound,
as residual undetected faults are not included in the
calculation. These upper bounds are adjusted by using
the model predictions for the number of faults left.
Table 1 shows the upper bounds of detection
efficiencies for Project A, and it compares the values
with industry values. These bounds were used as

6

parameters of the probability distributions for the
detection rates.
Activity Upper bound Industry values
Req review 0.50, 0.72, 0.85 0.7–0.85
Code and
design review

0.32, 0.30, 0.29 0.7–0.9 (code),
0.8–0.9 (design),
0.4–0.6, 0.75–
0.9

Test 0.48, 0.37 0.6–0.9
Static analysis 0.77, 0.60 0.76–0.86
Cust review 0.91

Table 1: Detection efficiency upper bounds

It can be seen that all the project efficiencies are
below the generic industry data for high integrity
systems. This may reflect on the rigour of the process
or it may reflect the difficulties in dealing with real
time software. For example, the lower review
efficiency of the static analysis is probably not due to
the rigour but reflects the scope of the analysis in
dealing with timing and other real time problems. The
same might be true for the coding review: the
consistently low numbers seem to be significant. As
for requirements, it is clear from the analysis of the
process that requirements elicitation and change are
major issues for the process. In part this may be due to
the concurrent engineering that is being performed
with software, hardware and engine being developed in
parallel, but it may also reflect a need for greater
attention to the requirements.

4.2. Fault creation rates

The same data sources were assessed for fault
creation rates (see Table 2).. In the data analysed there
was a very wide variation in requirements fault
creation rates. As a starting point, the requirements
creation rate is assessed to be the same as that for code.
There is more data on the proportion of coding and
design faults.

Proportions SPIN PODS1 PODS2 SEL SEI Average

Design 0.30 0.42 0.22 0.18 0.35 0.29

Code 0.70 0.58 0.78 0.82 0.65 0.71

Table 2: Generic fault creation rates

The average of these ratios was used in the generic
model. For the coding creation rate, the number of
projects was taken into account and the knowledge of
the spread in the data between projects. The data was
weighted by project and distributed according to the
judged uncertainty. In this way a histogram was
produced for the judged code fault creation rate.

The approach to fitting the distribution is common
to all the data analyses (see Figure 4). The distribution

to be fitted, in most cases a gamma distribution, was
parameterised in terms of the mean and mode. The
mean was calculated from the project data and the
mode estimated from the histogram of the data.

Data was provided for the faults found in a number
of different projects of the same company. The projects

cover library modules, support tools and a number of
different applications. They followed the same overall
process but there were differences in the details of the
process and the data collection mechanisms. The
collection of projects was treated as examples of the
process and a distribution derived accordingly. The
graph in Figure 5 shows the fit to a gamma distribution
of the projects (note the log scale). This distribution is
fitted to the company, but not to the specific project
being analysed.

Project specific fitted creation rates vary the

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

Judgement Gamma log normal
Faults /100 loc

Figure 4: Fitting of judgement on fault
rates

1 .10 3 0.01 0.1 1 10
0

5

10

Histogram
Gamma
Fault /100 loc

Figure 5: Fit of equipment fault creation

7

creation for the two iterations of the lifecycle in two
different ways. In these two ways, the probability
distribution for creation rates is the same in the two
iterations, but they are scaled differently:

• More fitted models scale the distribution
creation rates of each type of fault per cycle with
the number of faults actually detected during the
project. For example, 40% of the design faults were
found in the first cycle and 60% in the second
cycle.
• Alternatively, the creation rates for each cycle
are multiplied by the lines of code written in the
corresponding build: 1500 for the first build, 1050
for the second.

4.3. Process model

Recall that the development process of the software
consisted of two iterations of the lifecycle, as discussed
in Section 3.1. Using a sequential model, faults
inserted in the
first iteration can
be detected in
the second
iteration. An
alternative,
parallel model,
was also
developed (see
Figure 6). In this
model, the
phases are based
on the software
development
process of the project, but instead of considering two
iterations, only one of the iterations is modelled. Each
iteration is treated independently and does not allow
for faults inserted in the first iteration to be detected in
the second iteration. Hence, the number of residual
faults is the sum of the residual faults of each iteration
of development.

5. Results of modelling

For each of the models developed, we compare the
actual data with the model estimations for the number
of faults detected at each phase. We study further
variations of the model where different proportions of
faults between requirements, design and code faults are
considered, we increase the detection efficiencies of
reviews, or remove static analysis.

Table 3 illustrates the comparisons made. The
values in the table are faults detected per phase per 100
lines of code. The model in this table uses the project
detection efficiencies, the organisation creation rates

and the parallel structure. In this approach each
iteration is treated independently and does not allow
for faults inserted in the first iteration being detected in
the second iteration, i.e. we used the model in Figure 6.
The phases in the table correspond to the development
process: “coding” corresponds to the faults detected
during code review, “coding-trr” to the faults found
during test readiness review, and “customer review” is
the final review performed by the customer of the
company that supplied the data.

Phase Probabi
lity 0.05

Probabi
lity 0.95

Iteratio
n 1

Iteratio
n 2

Project
B

requireme
nts

0.12 3.18 0.47 2.00 0.12

design 0.05 1.39 0.00 0.19 0.08

coding 0.05 1.40 0.47 0.29 0.04

coding-trr 0.02 0.59 0.33 0.00 0.08

testing 0.03 0.84 0.47 0.10 0.08

static
analysis

0.022 0.63 0.67 0.38 0

customer
review

0.000 0.01 0.00 0.10 0.08

total 0.91 7.87 2.41 3.06 0.48

Table 3: Model detection efficiencies

As can be seen from the table above, there is
considerable variation between iterations and these are
compared with the probability bands of the model.
This shows that there is considerable variation in the
application of the same process. Most of the data is
between the 5% and 95% limits with the exception of
the customer review (which is based on little data).
Given that fractional faults cannot be observed, the
observation of any fault during customer review would
give a minimum figure of 0.1. The static analysis and
design figures are one observation outside the 5–95%
bands. The lack of design faults in Project A may be
due to classification features of the process as well as
the approach to design itself.

Table 3 also compares the iterations of Project A
and Project B. Note that Project B has different phases
and no static analysis was undertaken. The Project B
data resides just within the 5% band making it an
unusual project, according to the model.

In addition, different models are compared
according to the estimation of faults to field per 1000
lines of code (Table 4). Models fitted to project data
have higher predictions for residual faults. In addition,
parallel models also predict more faults. This is a result
of the fact that in these models faults created in the first
iteration are not found in the second iteration.
However, the predictions are consistent within a factor
of 2.8, which might be sufficiently accurate bearing in
mind the propagation of uncertainty in the various

Figure 6: Parallel iterations

8

parameters of the model. On this basis and using the
probability bands of the models developed, there is a
high chance that Project A will have between 2-7 faults
detected in later phases.

The modelling shows that the total faults to field is
predicted within a factor of ~2 using generic data. The
fit from one project predicts the second project well:
although there were doubts about the process
modelling and accuracy of Project B, the model based
on Project A predicted that there is a 50% chance that
the value of residual faults in Project B is between 2
and 7, with a mid value of ~4 residual faults. In fact, 5
faults were found in the field.

Creation
rates (R)

Detection
efficiencies
(D)

Process
Model

Mean of
faults to
field per
100kloc

Generic Generic parallel 1.21
Equipment
creation

Generic parallel 1.27

Equipment
creation

Project A
efficiencies

parallel 2.69

lines of
code

Generic sequential 0.95

Proportion
of faults

Generic sequential 1.34

lines of
code

Project A
efficiencies

sequential 1.85

Proportion
of faults

Project A
efficiencies

sequential 2.10

Table 4: Faults to field per 100kloc

A sensitivity study was undertaken to see how the
review efficiencies affect the total faults detected. The
results are surprisingly insensitive to the efficacy of the
review and detection process. Figure 7 shows the effect
of multiplying all the review and detection efficiencies
in the model by a scaling factor (the relative
efficiency). While the total detected is insensitive to
the review efficiency the total faults in the product
being deployed is not, as seen in the graph. The
flatness of the graph may explain why the fault
detection from projects reported in the literature is so
consistent.

6. Discussion

We looked at two projects from the same
organisation. These projects were dissimilar in both the
type of project and the type of data that was available.

We successfully reconstructed the development
process as enacted from the extensive documentation
collected. This reconstruction was supported by a
process visualisation technique based on document
changes, fault data and project activities. The

visualisation technique was used for both projects, and
it provided an accessible overview of the actual
process and proved very useful for the general
understanding of the process.

The interpretation of the process data was assessed
and verified in collaboration with the project
development team. Based on this information, we
produced a range of process models that were
calibrated with generic industrial data, partial data
from a collection of projects from the organisation and
detailed project specific data.

A detailed understanding of the process is
necessary to construct accurate models. The software
development documentation is seen as an abstract
description of the activities that take place. There is
always a difference between this abstract description
and the process as enacted. However, it is necessary to
understand the disparity from the abstract description
to the actual activities in order to model the projects.
Some of the discrepancies between the abstract
idealised description of the software development
process and its implementation are easy to grasp from a
superficial analysis. In general, however, this is not the
case. Everything needs much explanation and
interpretation, and interaction with the project team is
needed to comprehend the full process and its
activities. In a way we are undertaking an ethnographic
study of the development process.

However, even if an accurate process description
already exists, the credibility and trust placed in a
model depends on this fieldwork. To trust the model
there is a need to understand the origin and limitations
of the data.

There is always some uncertainty in these models.
The process discovery and analysis shows that there is
a considerable variability between applications of the
same process. There are wide variations between
projects and between the iterations of the same project.
These variations make the predictions less accurate and
make project monitoring and cost prediction more
problematic. Some of this variation may be due to
inherent randomness in human activity and the
perturbations that impact any project. However, in the
cases analysed, it is judged that improving the handling
of requirement change and improving the consistency
of data reporting and classification would reduce this
variability.

The total of faults detected in a product line is
predicted well from generic industrial data i.e. better
than 10%. Models based on generic fault creation rates
and detection efficiencies predict faults to field to
within a factor of 2–3 when compared with models
based on detailed calibrations. The generic models are
less accurate at detailed predictions of faults found in
the different lifecycle phases: for this fitting the model

9

of the organisation’s own detection efficiencies is
required.

A model has been developed that adjusts itself to
the faults detected in the product line but this was
considered to be over fitting given the uncertainties in
the data. However in other applications this may be
needed where there is not good agreement between the
generic data and the company aggregated data.

This approach relies on the maturity of the
organisation to collect and analyse development data.
While the method might be feasible retrospectively, it
will be most readily used in organisations with high
level of process maturity (e.g. 3 or above on the CMM
scale). If an organisation has no data on the results of
its process but does know the structure, the modelling
using our generic data would be possible. Generic data
will result in a wide spread in results. Nevertheless, it
might have an important role in sensitising people to
what might be credibly claimed for the system and in
rejecting the more outlandish claims.

Similarly for COTS one might use generic data
with a generic process to provide some indication of
the quality of the product.

The modelling may also provide a more detailed
appraisal of the impact of process improvement and in
its use of uncertainties, the emphasis on modelling real
rather than assumed processes, and the approach to
calibration provides a credible approach. The work has
led to several recommendations to the data provider for
process improvements: it provides an empirically and
technically sound support for these recommendations.
It was observed that there was a predominance of
requirements related issues and consistently low
review efficiencies when compared with generic
industrial data.

It is clear from the analysis of the process that
requirements elicitation and change are major issues
for the process. In part this may be due to the
concurrent engineering that is being performed with
software, hardware and engineering system being
developed in parallel but it may also reflect a need for
greater attention to the requirements within the
process. The faults to field are predicted to be
dominated by requirements faults because the
performance process barriers are an order of magnitude
less effective than those for design and code faults.

The profile of faults found by phase is needed for
process improvement measures (not just the total of
faults found) as the totals of detected faults is
insensitive to improvements in detection efficiencies.

Finally we should consider the use of this model
results in the reliability bound model [1]. The process
model will produce a distribution function for N and
this can be used in a number of ways. It can be used
directly to provide a confidence in the bound or a

judgement can be made that N is less than a certain
figure to a required confidence (e.g. 99% confidence
N<x). In making these judgements we need to assess
whether the process model itself is underestimating N.
This could come from two main sources: overestimate
of efficiencies, and underestimate of N used to
calibrate the model.

An overestimate of efficiencies might come from
ignorance of the actual number of faults left in the
product rather than the measured total. In fact the
model predictions can be used to adjust for this but for
the early phases the impact is small, as the number of
faults to field is a relatively small proportion of the
total faults found. If the model is being used, the
results should be subject to a sensitivity study as we
show in Figure 7. If we are only seeking a prediction
within a factor of 2-3 then the model is relatively
insensitive to review efficiencies (e.g. can vary by ~2).
Analytica also provides statistical measures of
importance that indicate the major sources of
uncertainty in the predictions.

The other concern is some systematic and gross
underestimate of N – the iceberg effect – in part due to
experience with datasets such as Adams [18] that
indicate a substantial number of very low rate faults in
a large operating system. Given the safety critical
nature of the products, their small size and very
extensive field experience we can be confident that
there are not a large class of faults undetected and
unpredicted by the model. If there were, they would
have to had no impact on reliability over many years,
over diverse products and not have been detected by
the verification techniques deployed.

There may also be some subtle effects that lead to
loss of conservatism. For example, there could be a
correlation between a high number of faults inserted

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5

Relative review efficiencyTotal to field

Total detected

Faults/kloc

Figure 7: Variation of faults observed
and to the field with detection efficiency

10

and low review efficiencies due to novelty in the
problem being addressed or due to project stress. This
would increase the tail of the N distribution.

There are also assumptions that the performance on
past projects predicts the future. There could be
substantial changes to the culture of the company (e.g.
changes to safety culture due to project stress, take-
overs) and technology and engineering changes that
might invalidate the predictions.

7. Conclusion

In this study:
• The actual process followed by the company
was successfully reconstructed from the extensive
documentation collected.
• A process visualisation technique based on
documentation changes, fault data and project
activities was developed, which provided an
accessible overview of the actual process.
• The interpretation of the process data was
assessed and verified in collaboration with the
project development team.
• A range of process models was produced that
were calibrated with generic industrial data, partial
data and detailed project specific data.
We concluded that a detailed understanding of the

process is necessary to construct accurate models and
that the credibility and trust placed in a model depends
on this fieldwork. Models based on generic fault
creation rates and detection efficiencies predict faults
to field within a factor of 2-3 when compared with
models based on detailed calibrations. The generic
models are less accurate at detailed predictions of
faults found in the different lifecycle phases: for this
fitted models to the organisation’s own detection
efficiencies is required. The work led to several
recommendations to the data provider for process
improvements.

Based on the experience in this project it was
judged that the approach could support a judgement of
the likelihood of a system being deployed with faults
and hence support the overall safety justification. For
larger systems the results could form the basis for
estimating “N” in the long-term reliability model and
for more mature systems the probability of there being
a fault in the delivered product.

Acknowledgments
This work was funded under the HSE Generic Nuclear
Safety Research Programme under contract 40029264
and is published with the permission of the Industry
Management Committee (IMC). The views expressed
in this report are those of the authors and do not

necessarily represent the views of the members of the
IMC or the Health and Safety Commission/Executive.
The IMC does not accept liability for any damage or
loss incurred as a result of the information contained in
this paper.

References
[1] PG Bishop and RE Bloomfield. “A Conservative

Theory for Long Term Reliability Growth
Prediction”. In IEEE Trans. Reliability, vol 45, n 4,
pp 550-560, Dec 1996.

[2] F. Akiyama. “An Example of Software System
Debugging”, Proc. IFIP Congress’71,1971. As cited
in [3].

[3] M. Shooman. “Software Engineering”, International
Student Edition, 1983.

[4] M E Fagan, “Design and code inspections to reduce
errors in program development”, in IBM Systems
Journal, Vol 15 No 3, pages 219-248, 1976.

[5] A Jourdil, R Galera, “Methode de developpement
d’un logiciel de surete”, cahiers technique 117,
Merlin-Gerin, France, 1982.

[6] “An overview of the software engineering
laboratory”, SEL-94-005 NASA Goddard Space
Fligth Center, and associated database, 1994.

[7] “A business case for software process improvement”,
Data Analysis Center for Software, F30602-92-C-
0158, 1996.

[8] M Dyer, “The cleanroom approach to quality
software development”, Wiley 1992, ISBN 0-471-
54823-5.

[9] Analytica User Guide, http://www.lumina.com.
[10] PG Bishop et al. “PODS a Project in Diverse

Software”, IEEE Trans. Software Engineering, Vol.
SE-12, No. 9, pp. 929-940, 1986.

[11] PG Bishop et al. “STEM: a Project of Software Test
and Evaluation Methods”. In Safety and Reliability
Society Symposium 1987 (SARSS 87), Manchester,
Elsevier Applied Science, ISBN 1-85166-167-0.

[12] P. Hall et al, “Integrity Prediction during Software
Development”, IFAC Symposium on Safety of
Computer Control Systems, Zurich, 1992.

[13] K. Yasuda, “Software Quality Assurance Activities
in Japan”, Japanese Perspectives in Software
Engineering, 187-205, Addison-Wesley, 1989.

[14] M.A. Cusumano, Japan’s Software Factories, Oxford
University Press, 1991.

[15] Fenton NE and Neil M, “Bayesian belief nets: a
causal model for predicting defect rates and resource
requirements”, Software Testing and Quality
Engineering 2(1), 48-53, 2000.

[16] Fenton NE and Ohlsson N, “Quantitative Analysis of
Faults and Failures in a Complex Software System”,
IEEE Transactions on Software Engineering, 26(8),
August 2000.

[17] Hugin A/S: http://www.hugin.com.
[18] E.N. Adams, “Optimizing preventive maintenance of

software products,” IBM Journal of Research and
Development, vol. 28, no. 1, pp.2-14, 1984.

