The future of goal-based assurance cases

Peter Bishop 1’2, Robin Bloomfield 1’2, Sofia Guerra '
'Adelard and ? City University
Drysdale Building, Northampton Square
London EC1V OHB
pgb@adelard.com, reb@adelard.com, aslg @adelard.com

Abstract

Most regulations and guidelines for critical systems
require a documented case that the system will meet its
critical requirements, which we call an assurance case.
Increasingly, the case is made using a goal-based
approach, where claims are made (or goals are set)
about the system and arguments and evidence are
presented to support those claims. In this paper we
describe Adelard’s approach to safety cases in
particular, and assurance cases more generally, and
discuss some possible future directions to improve
frameworks for goal-based assurance cases.

1 Introduction

Safety cases are increasingly accepted and mandated as
a primary means of communicating the safety
requirements, safety management environment and for
assuring critical systems. We define a safety case as

"A documented body of evidence that provides
a convincing and valid argument that a system
is adequately safe for a given application in a
given environment" [9]
Although safety cases are generally accepted, there are
different ways of constructing such a justification. The
three main approaches can be characterised as a
“triangle” of:
e Justification via a set of claims about the systems
safety behaviour.
e The use of accepted standards and guidelines.

e An investigation of known potential
vulnerabilities of the system.
Goal based
approach
Safety
Justification _—
Vulnerability Stannz.r S
assessment .a

guidelines

Figure 1: Safety case approaches

The first approach is goal-based—where specific
safety goals for the systems are supported by arguments
and evidence at progressively more detailed levels. The
second approach is based on demonstrating compliance
to a known safety standard. The final approach is a
vulnerability-based argument where it is demonstrated
that potential vulnerabilities within a system do not
constitute a problem—this is essentially a “bottom-up”
approach as opposed to the “top-down” approach used
in goal-based methods. These approaches are not
mutually exclusive, and a combination can be used to
support a safety justification, especially where the
system consists of both off-the-shelf (OTS) components
and application-specific elements.

In the past, safety justifications tended to be implicit
and standards-based—compliance to accepted practice
was deemed to imply adequate safety. This approach
works well in stable environments where best practice
was supported by extensive experience, but with fast
moving technologies, a more explicit goal-based
approach has been advocated, which can accommodate
change and alternative strategies to achieve the same
goal. This paper will focus on the goal-based approach
to safety justification and in particular the approach
developed by Adelard. It also discusses possible
developments on safety case approaches and how the
methodologies and techniques used for developing
safety cases can be more generally used in other
domains, which leads to the concept of assurance
cases.

2 Goal-based approaches

Over the past 10 years there has been a trend towards
an explicit goal-based approach to safety justification.
The approach is to support how sophisticated
engineering arguments are actually made. This is based
on earlier work on argumentation structures by Toulmin
[8]. Toulmin’s scheme addresses all types of reasoning
whether scientific, legal, aesthetic, colloquial or
management. The general shape of arguments consists
of grounds, claims, warrants and backing:
e (Claims, as the name suggests, are assertions put
forward for general acceptance.
e The justification for the claim is based on some
grounds, the “specific facts about a precise
situation that clarify and make good the claim”.

e Next the basis of the reasoning from the grounds
(the facts) to the claim is articulated. He coins the
term warrant for this. These are ‘“statements
indicating the general ways of arguing being
applied in a particular case and implicitly relied on
and whose trustworthiness is well established”.

e Next we may question the basis for the warrant and
here Toulmin introduces the notion of backing for
the warrant. Backing might be the validation for
the scientific and engineering laws used.

The work of Toulmin is the basis of the Adelard
goal-based justification approach ASCAD [9], together
with our experience of developing and assessing real
safety cases particularly early assessment in the 1980s
for Sizewell B Primary Protection System and major
hazard areas [3]. In the claims-argument-evidence
structure used in ASCAD:
¢ (laims: these are the same as Toulmin’s claims.

e Evidence: is the same as Toulmin’s grounds.

e Argument: is a combination of Toulmin’s warrant
and backing.

This relationship is illustrated in Figure 2.

Argument

Backing

M:odality

Claim
Supports

Figure 2: Relationship between Toulmin’s scheme
and ASCAD Claims-argument-evidence approach

A similar relationship can be demonstrated between
the Goal Structuring Notation—GSN [7] and the
original Toulmin concepts, where a GSN “goal” is
equivalent to claim, which is “solved” by strategies,
sub-goals and solutions (which can be related to
warrants and grounds). There are also extensions, such
a “context” relationships (e.g. to related models).

Tools to support such notations have been developed
and are essential if a graphical approach is used. One
early development was the SAM safety argument
manager [6]. SAM could present and edit safety
justifications graphically using the GSN notation, and it
also contained supporting tools (like fault tree analysis).
The more recent ASCE tool [10] has a more open
structure, supporting different notations, like ASCAD
claims-argument-evidence and Goal Structuring
Notation (GSN) and allows direct links to external
documents and tools.

3 Adelard approach to safety cases

=18l x|

File Edit View Format

==l Y

ools Windows Help

[Zoom |
e iarkplace focus
functionial HEs.
safety adequate [I
% y 7 4 200%

Relevant i Sites
standards Historically inspected
applisd sate

=y

/

System Safe(
Y {——
Description FHLE I oen Hazard Lng Nevis P

Kl | ' 4

!ur\wor\

Figure 3: Claim-argument-evidence safety-case

In this section we outline our approach to safety case
construction, this is not simply a matter of a suitable
notation—the primary concern is the content of the
safety case. A general introduction to safety cases is
provided by the pages we wrote for the UK IEE
Professional Network [1]. Recall our definition of
safety case: “a documented body of evidence that
provides a convincing and valid argument that a system
is adequately safe for a given application in a given
environment” [9].

In the Adelard approach, the elements of a safety
case are:

e (Claims about a property of the system or some
subsystem.

e Evidence that used as the basis of the trust
argument. This can be either facts (e.g. based on
established scientific principles and prior research),
assumptions, or sub-claims, derived from a lower-
level sub-argument.

e Argument linking the evidence to the claim.

We distinguish different types of argument:

e Deterministic or analytical application of
predetermined rules to derive a true/false claim
(given some initial assumptions), e.g. formal proof
(compliance to specification, safety property),
execution time analysis, exhaustive test, single
fault criterion.

e Probabilistic quantitative statistical reasoning, to
establish a numerical level, e.g. MTTF, MTTR,
reliability testing.

e (Qualitative compliance with rules that have an
indirect link the desired attributes, e.g. compliance
with QMS and safety standards, staff skills and
experience.

Although it is difficult to make valid sweeping
generalisations, we prefer (all things being equal)
deterministic arguments to probabilistic to qualitative
ones. However the key idea here is that separating
arguments is very important.

There are a number of important concepts in
deploying the safety case approach:
1. The concept of the top event or the loss event on the
environment boundary
Definition of system and sub-system boundaries
The use of initiating events
The risk reduction measures via protection systems
The wuse of functional diversity within the
architecture
The (often modest) reliability requirements on
protection functions
7. Implementation via configured system (COTS)
8. The use of Software Criticality Analysis and

criticality and integrity levels
In addition we see that convincing people of safety

is essentially a socio-technical process where the case
has to be valid and convincing to a range of
stakeholders so that issues of communication and
consensus building are very important.

Rl el

o

3.1 Safety case structure

A goal-based approach to justify safety is often a top
down method where the claim “the system is safe” is
elaborated into subclaims until evidence is available to
satisfy the sub-claim. The decomposition is supported
by a normally explicit use of arguments to justify the
inference being made.

In a real project there are a large number of claims
that can be made about a system, its design,
development process, operational and organisational
context. Each clause in a standard, each component and
interface can generate claims. It is a challenge to find a
way of analysing and structuring these claims so that
the safety justification can be subject to a rigorous
review process.

In general we find that safety justifications have two
types of claims:

e (Claims about the system, e.g. safety requirements,
implementation and evidence that the requirements
are met.

e (Claims about the safety case itself, e.g. claims
about the quality of the evidence and the adequacy
of the argument—one might call these meta-claims.

These claims are sometimes combined. within a single

justification. For example, in CAA SWOI [17] claims

about the quality of the evidence appear in the system
claims. However in this paper we propose that these

should be separated into two claim trees i.e.:

1. A tree where the top-level claim is that the system

behaviour is safe.

2. A tree concerning the quality of the safety case.

3.1.1 Claims about the system

design for
operation,
modification

security ok

Caontinues to be
zafa

|5 zafe

1= safa now

Safaty
Raguirements
Adeguate

Maw
- requirements
valid

Requiremanis
compase

Requiremants
Valid

B

Low rate of error
introduction

Satisfaction

techniguas

Figure 4: Example of safety-claim structure

Non
Interfarence and
artitionin

High rata of
dataction

Based on a variety of different sources, we can
construct a typical tree such as that in Figure 4. The
claim decomposition will have to be justified and
clearly an argument established that the fault
avoidance/detection claims compose to satisfying the
safety properties.

Safety properties are derived from a hazard directed
approach. System safety analysis identifies hazards;
these are amalgamated and abstracted into safety
properties. The safety properties can be functions (e.g.
shut down of the plant when the temperature exceeds
500 degrees), invariants (e.g. the minimum separation
of aircraft is always more than 2 miles) or purely
descriptive (e.g. competency and culture). In protection
system applications, some of the functions will be
“handed down” from plant level analysis and as such
can be treated as the starting point for elaborating safety
properties. Nevertheless there are still issues in
ensuring that the abstraction and models implicit in
these requirements match those of the protection
system. In our and related approaches [9][17] each
attribute of the safety system is considered to ensure

completeness:
® correctness e fail safety
e timeliness e usability
® accuracy ® security
e reliability ® maintainability
e availability ¢ modifiability

e robustness

The properties are only safety relevant in a given
application context. For example “timeliness” might not
be safety relevant for an advisory system, but
“accuracy” could be. By focusing on desired behaviour,
the argument and evidence are primarily related to the
product rather than the process. Typically the evidence
for the product comes from:

e analysis (of the system, hardware or software)
e.g. static analysis or review

e conventional testing (of components or the
overall system, typically to check properties such
as accuracy and timeliness)

e reliability testing, such as may be achieved

through a statistical approach

e field experience (e.g. analysis field problem

reports to identify residual faults or to estimate
reliability)

For example, accuracy might be justified by an
analysis of the accuracy of the inputs, outputs and the
computational algorithm, or by black-box tests using
known results. Process aspects (such as standards
compliance) can help to provide such evidence (e.g. the
results of functional tests) and give confidence that the
test results are valid.

3.1.2 Safety case quality

The quality of the safety case evidence, our
confidence that we are arguing about the right
components and have the environment adequately
characterised are all important to our overall judgement
that the we can deploy a system. Based on the
definition in [3] and the goal of configuration
consistency in [17] we can develop a tree such as that in
Figure 5.

[Application
defined

environment
characterised

adequately
safe defined

Adequale
safety case

convicing
argument

claim structure
adeguate

applied in
relevant wa

adequate rigour

configuration
consitenc

trusted

evidence
trusted
organsiation

valid argument
strateq

evidence

Figure 5: Example of safety case quality claims

Note the importance of justifying the claim structure.
Unless the claim structure for the safety system is
agreed, there is the risk of debate and contention as the
project develops. Also with software safety cases, we
often encounter cases where the link between evidence
and claim is tenuous and not rigorous enough. An
explicit examination of the claim and argument
structure will help to reveal this.

3.2 Assurance of system components

Common feature of safety case that we encounter is
that the system architecture often includes off the shelf
(OTS) components. We are undertaking research in this
area at the moment to a suitable approach for OTS
justifications that can be integrated into an overall
safety system justification.

Clearly, it is not possible to say whether a component
is safe or not in isolation—safety depends on the
context in which the component operates. So we cannot
claim that a component is “safe” in any direct sense, but
we should be able to justify that the component “does
what it says on the tin”. This is a common concept for
hardware based systems, which undergo “type
approval”, and once approved, are deemed to provide
some guaranteed level of service.

Such “type approval” ideas could in principle be
applied to software-based and software-only OTS, and
could be justified using the same claim-argument-
evidence approach.

We have been investigating this approach for the
justification of smart sensor, where the claims are about
safety-related properties of the OTS product rather than
the safety of the system as a whole, e.g.:

e correctness (relative to its published specification)

accuracy

timeliness

reliability

failure modes
We also need to take account of its use within the
system as a whole, so we also need to demonstrate:

e non-interference with other components of the
system

e suitability of the component for the required
application

Typically any OTS component running in the same
fault containment region (e.g. the same processor)
could interfere with the functions of any other
component. So even if the actual function of the
component has no direct impact on safe operation of the
system, there is potential for interference with other
safety-related functions.

Adelard have been involved in assessments of
safety-related OTS software to check for the non-
interference property. This involved:

e Identification of the safety criticality of the OTS

components [4]. This involves identification of the
potential interference paths such as shared data or
resources.
Checking for interference between low-and high-
criticality components [5] which we term “integrity
static analysis” where the potential interference
paths are analysed in detail.

More generally, we have produced advice for the UK
Health and Safety executive (HSE) on the use of
Software of Uncertain Pedigree (SOUP) [16]. For all
such components we advocate that the potential hazards
of using a component are identified as part of the
overall system hazard analysis, and suitable mitigations
are implemented (e.g. the use of “wrappers” to

minimise the potential for interference or to check the
function of the OTS component). These design
defences can form part of the justification of the overall
system as part of the evidence in justifying the integrity
of the whole system.

4 Assurance cases: future directions

While there has been considerable progress over the
past ten years in developing a more structured and
convincing safety case approach, there are a number
issues that still need to be addressed, including:

e the appropriate level of formality

e the relationship to standards

e relevance to non-safety domains

Potential directions are discussed in the sections below.

4.1 Formality and models

Generally speaking, the safety cases we assess (and
the ones we construct for clients) are fairly informal,
both in the language used and the claims made. Is there
scope for greater formality in the construction of a
safety case? It would be instructive to consider the
models of the system context that the claim refers to
because:

e It is easier to reason about claims and evidence
within the same context—the models can support
valid reasoning.

¢ The models can make explicit difficult bridges and
interfaces in the argument—for example going
from quality of the development process to
reliability of the product; going from static analysis
compliance analysis to reasoning about resource
usage and timing.

e The models also assist in structuring sub-claim-
trees and help identify the required responsibilities
and competencies.

For example, in a recently completed research
project [2] we advocate the use of models at the
following levels:

e plant /safety system interface

e safety systems architecture

e safety system components

e the operational environment

Claims at any level can only be expressed in terms
of entities visible at that level (i.e. in terms of the
particular model entities) and claims are supported by
evidence about the observable behaviour at that level
(e.g. by testing). Alternatively a claim can be supported
by sub-claims about more detailed models at the lower
levels. For example, a top-level claim at the plant/safety
system interface would be expressed in entities visible
at the sensor/actuator interface, e.g. if any two sensed
temperature values exceed the trip limit value, the
output signal will be set to “trip”. This might be
justified by test evidence at the plant interface, or by
analysis of the functions of the components within the

system architecture (e.g. that an analogue input has a
certain accuracy or a certain failure state). In this case,
sub-claims at lower levels of the design are combined
e.g. tests of individual components, or formal proof of
functionality.

Such an approach might encourage better structured
justifications and a clearer identification of the required
evidence to support the claim [21].

4.2 Standards

Despite the differences in detail, goal-based
approaches are now being adopted in standards. We
have had the opportunity of incorporating some of the
ideas discussed here in several standards. The UK Civil
Aviation Authority software safety assurance standard
[17] identifies a standard set of top-level goals for a
software based systems which are generic (e.g.
specification is valid, specification is correctly
implemented, etc.).

We have also contributed to several standards of the
UK Ministry of Defence (MOD) [12][13][14], which
are linked to MOD guidance on the safety justification
documentation [11]. This justification focuses on
hazards and their control, i.e. identification of hazards,
risk assessment and hazard mitigation, together with
compliance to regulations and long term support. These
could be viewed as elements of an argument to show
that the system will be adequately safe. The MOD also
provides guidance on software safety-cases in [11],
which again, following our ideas, recommends safety
cases structured on claims and evidence, but focused on
demonstrating particular specific safety properties. We
took the ideas discussed in this paper further in the
software part of the new version of Def Stan 00-56 [13]
by requiring goal-based safety justification and explicit
safety arguments to support the safety claims made.

In the guidance we produced to the UK Health and
Safety Executive [16] and that developed in the SHIP
project [3], the justification is directed towards the
demonstration of safety properties, as described above.

Although several standards have adopted goal-based
approaches to safety justification, there is still a strong
line that advocates more prescriptive approaches, and
the educational work needed to support a change of
culture remains a challenge.

4.3 Other domains

The type of argumentation presented in this paper is
not specific to safety alone, but it could be used to
justify the adequacy of systems in different critical
applications, including security critical, business critical
or service critical. The general case could be called
assurance cases, or, if consider more than one attribute
and as we have called them elsewhere [19], trust cases
or dependability cases.

We have also developed the concept of software
reliability case, which is now a MOD [15] and NATO

requirement. A software reliability case is defined as “a
readable overview of the evidence that the software
meets its reliability requirements”. The structure of
reliability cases is similar to that described above,
where claims about the reliability of the software are
made, supported by arguments and evidence.

Similarly, dependability cases are taken to mean the
evidence and arguments that are used to support wider
dependability claims about systems. Dependability
cases enable the user to trust a system, i.e. to have
confidence in the service it delivers. Dependability is a
generic concept that covers not only safety but also
other attributes such as security, availability, reliability
and integrity. Dependability cases can be deployed in
different application areas, especially for human-
computer advisory systems and their development
could bring the argumentation techniques described in
this paper to even more application areas. They are the
subject a several research projects (e.g. DIRC [18]) and
were considered in the dependability road-map
commissioned by the European Commission [20].

We are also researching security cases for intrusion
detection systems. More broadly the concept has
applicability to providing justification for Operational
Risk assessments within the Basel 2 framework.

5 Conclusions

In this paper we described our ideas on goal-based
safety justifications. The discussion considers how to
structure a safety case by separating claims about the
system from claims about safety case. This structure
distinguishes the quality of the system itself from the
quality of the evidence and the argumentation that
supports the case for safety.

The structure of the safety justifications can also be
shaped by the modular assurance of system
components, in particular of off-the-shelf components.
Rather than claiming that such components are safe,
assurance of these components would claim predictable
behaviour consistent with the component specification.
In addition, non-interference of the components would
need to be justified. This component approach has been
used in an industrial off-the-shelf product and is being
further developed in the context of smart sensors.

Further work is finally discussed, where we consider
the use of formality and models to support the
validation of the safety case, the relationship to
standards and how the safety case goal-based approach
can be deployed in other application areas.

6 References

[1] Adelard, “Safety Cases for PES”,
http://www.adelard.co.uk/iee_pn/index.htm
[2] Cemsis project. http://www.cemsis.org.

[3] P G Bishop and R E Bloomfield, “A Methodology for
Safety Case Development”, Safety-Critical Systems
Symposium (SSS '98), Birmingham, UK, Feb 1998.

(4]

(5]

(6]

(7]

(8]
(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

P.G. Bishop, R.E. Bloomfield, T.P. Clement, A.S.L.
Guerra, “Software Criticality =~ Analysis of
COTS/SOUP”, SAFECOMP 2002, pp. 198-211, 10-
13 September Catania, Italy, 2002

P.G.Bishop, R.E. Bloomfield, T.P. Clement, A.S.L.
Guerra, and C.C.M Jones, “Integrity Static Analysis
of COTS/SOUP”, SAFECOMP 2003, pp. 63-76, 21-
25 Sep, Edinburgh, UK, 2003

J.A. McDermid, “Support for safety cases and safety
argument using SAM”, Reliability Engineering and
Safety Systems, Vol. 43, No. 2, 111-127, 1994.

Kelly, T & McDermid, J, Safety Case Construction
and Reuse using Patterns, Proc 16th Conf on
Computer Safety, Reliability and Security (Safecomp
‘97) 1997

S. E. Toulmin “The Uses of Argument” Cambridge
University Press, 1958.

R E Bloomfield, P G Bishop, C C M Jones, P K D
Froome, ASCAD—Adelard Safety Case Development
Manual, Adelard 1998, ISBN 0 9533771 0 5.

Luke Emmet & George Cleland, Graphical Notations,
Narratives and Persuasion: a Pliant Systems Approach
to Hypertext Tool Design, in Proceedings of ACM
Hypertext 2002 (HT’02), June 11-15, 2002, College
Park, Maryland, USA.

JSP 454, “Procedures for Land Systems Equipment
Safety Assurance”, Issue 2, January 2000.

Def Stan 00-55, “The Procurement of Safety Related
Software in Defence Equipment” - Parts 1 & 2, UK
Ministry of Defence, Defence Standard 00-55/Issue?2,
August 1997.

Def Stan 00-56, “Safety Management Requirements
for Defence Systems”, UK Ministry of Defence,
Defence Standard 00-56/Issue 2, December 1996.

Def Stan 00-58, “Hazop studies on Systems
Containing Programmable Electronics”. Part 1:
Requirements. Part 2: General Application Guidance.
UK Ministry of Defence, Interim Defence Standard
00-58, 1996.

Def Stan 00-42, “Reliability and Maintainability
Assurance Guides”. Part 2: Software. UK Ministry of
Defence, Defence Standard 00-42/Issue 1, December
1997.

P.G. Bishop, R.E. Bloomfield and P.K.D. Froome,
“Justifying the use of software of uncertain pedigree
(SOUP) in safety-related applications”, Health and
Safety Executive Contract Research Report, CRR
336/2001, ISBN 0 7176 2010 7, HSE, May 2001.
CAA CAP 670, “SWO01 - Regulatory Objectives for
Software Safety Assurance”, CAP 670 Air Traffic
Services Safety Requirements. CAA Safety
Regulation Group, 1998.

DIRC Interdisciplinary Research Collaboration in
Dependability http://www.dirc.org.uk/

“The Pursuit of Trust: Finding a Way Through the
High Assurance Landscape” Robin Bloomfield,
Keynote at the 27" Annual International Computer
Software and Applications Conference, COMPSAC
2003.

Accompanying Measure in System Dependability
FP5.8 KAII Roadmapping project June 2002 - May
2003http://www.am-sg.org

RE Bloomfield and B Littlewood, “Multi-legged
Arguments: The impact of Diversity upon Confidence
in Dependability Arguments”, DSN 2003, pp. 25-34,
IEEE Computer Society, ISBN 0-7695-1952-0, 2003.

