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ABSTRACT 
One of the main problems with reliability testing and prediction is 
that the result is specific to a particular operational profile. This 
paper extends an earlier reliability theory for computing a worst 
case reliability bound. The extended theory derives a re-scaled 
reliability bound based on the change in execution rates of the 
code segments in the program. In some cases it is possible to 
derive a maximum failure rate bound that applies to any change in 
the profile. It also predicts that (in principle) a “fair” test profile 
can be derived where the reliability bounds are relatively 
insensitive to the operational profile. In addition the theory allows 
unit and module test coverage measures to be incorporated into an 
operational reliability bound prediction. The implications of the 
theory are discussed, and the theory is evaluated by applying it to 
two example programs with known faults.  

Categories and Subject Descriptors 
D.2.4 [Software/Program Verification]: reliability, statistical 
methods; D.2.5 [Testing and Debugging] coverage testing 

General Terms 
Reliability, Theory, Experimentation 

Keywords 
Operational profile, operational reliability testing, worst case 
bounds. 

 

1.  INTRODUCTION 
One of the main problems with reliability testing is that the result 
is specific to a particular operational profile. This paper extends 
an earlier worst case bound reliability theory to allow the bound 
to be re-scaled for a new operational profile. The paper will first 
show that the original worst case bound theory (for continuous 
time) also applies to discrete tests, and then present the extensions 
of the theory for re-scaling the bound to a new operational profile. 

The implications of the theory are discussed, and the theory is 
evaluated by applying it to example programs with known sets of 
faults. 

2.  WORST CASE BOUND THEORY 
The observed reliability of a system containing design faults is 
based on three main factors: 

• the number of faults 

• the size and location of faults 

• the input distribution (operational profile) 
This is illustrated in figure 1 below. 
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Figure 1. Operational profile and software failure rates  

While there are many methods for estimating the likely number of 
software defects N, there is no way to establish the failure 
frequencies λ1 .. λΝ for unknown software defects under a given 
input distribution I. However the theory developed in [2] can 
place a worst case bound on the failure rate for all the defects 
based on the amount of usage time. The theory makes the 
relatively standard reliability modelling assumptions that: 
a) removing a fault does not affect the failure rates of the 

remaining faults 
b) the random failure frequencies of the faults can be 

represented by λ1 .. λΝ, which do not change with time (i.e. 
the input distribution I is stable) 

c) any fault exhibiting a failure will be detected and corrected 
immediately 

The basic idea behind the model is very simple; once the software 
has been operating for some time, faults with the highest failure 
frequencies are likely to be removed, while faults with low failure 
frequencies only make a small contribution to the residual 
software failure frequency. Thus for a given number of test 
executions, T, there is a worst case λ which maximises the 
probability of the failure on the next test.  
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Put more formally, using the assumptions given above, for a 
defect i with a probability of failure per program test of λi, the 
probability of observing a failure after T prior tests is: 

T
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where Ti is the test where the defect is detected (and removed).  

Differentiating with respect to λi, it can be shown that the 
maximum failure probability after T tests occurs when: 
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Substituting back into (1) and rearranging, the upper bound on the 
probability of failure after T tests is: 
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As the ex asymptote is an upper bound, it follows that, for all T: 
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If we define θi (T) as P(Ti=T+1), the probability of failure per test 
after T tests, then: 
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This bound is independent of the defect failure probability. Figure 
2 below illustrates this independence for different values of λi. 

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000
Tests T

Probablity
of failure
after  T
tests

λ =0.1
λ =0.01
λ =0.001
1/eT

 
Figure 2. Illustration of the worst case bound 

It is clear that, regardless of the value of λι, the probability of 
failure per test after T tests, θi (Τ), is bounded by 1/eT. 

In the worst case, the failures of all faults are disjoint, so we can 
sum the bounds for all N faults to derive a worst case bound for 
the probability of program failure after T tests, θ(T), i.e.: 

eT
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This is the discrete equivalent of the continuous time bound 
equation in [2] where the bound on failures per unit time after a 
test time t is shown to be exactly N/et (or alternatively the bound 
on the MTTF after a test time of t, MTTF(t), is exactly et/N). 
The result is surprising because it permits long-term reliability 
predictions to be made at t=0. If the model assumptions apply and 
we can estimate the number of faults N at the time of release (e.g. 
using estimation methods such as [3], [4], [7], [9]) the reliability 
growth can be bounded at any time in the future. Note that the 
theory does not tell us when (or even if) the faults will be found, 
but it does set a quantitative bound on the probability of program 
failure after testing and this bound always decreases with 
increasing tests (or operating time). 
Figure 3 shows the application of the theory to the field reliability 
data of a commercial teleswitch [5]. The reliability bound is based 
on an estimate for N that is 50% more than the number of detected 
faults reported in [5]. The bars represent the measurement 
uncertainty in taking the average of several times to failure to 
estimate the current MTTF. 
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Figure 3. Reliability growth of a commercial teleswitch 

The effect of violating theory assumptions (a) and (c) were 
examined in [2]. Both correction-induced faults and variations in 
the operational profile can alter the bound and cause a “saw-
tooth” pattern of failure rates. It was however also shown that the 
worst bound should still hold over time periods that are longer 
than the short term fluctuations caused by changes in operational 
profile. 
However the theory cannot predict what the reliability bound will 
be after a major change in the input profile (e.g. from 
development testing to operation). For example, in figure 3 above, 
there is a sudden drop in reliability after 0.1 years of usage. This 
might be due to a transition from field trials to full operational 
use—a point where there could be a dramatic change in the 
operational profile and where the standard reliability bound 



prediction does not apply. The remainder of this paper describes 
an extension to the worst case bound theory that allows the 
reliability bound to be “re-scaled” to predict the effect of a 
transition to a different operational profile. 
Note that this extension to the theory predicts the change in 
reliability bound immediately after the change in profile (with no 
fault correction). If detected faults are corrected immediately in 
subsequent operation then, given sufficient usage time with an 
unchanged profile, the bound will eventually fall back to the 
original bound of N/et. 

3.  EXTENDED THEORY 
The extended theory makes some additional assumptions: 
1) Each fault is localised to a single code segment, i.e. is in a 

“basic block”. 
2) The externally observed failure rate is proportional to the 

execution rate of the faulty code segment. 
3) There is a constant probability of a fault existing in any line 

of executable code. 
4) The operational profile I can be characterised by the 

distribution of code segment executions in a program Q. 
The final assumption requires some further explanation. The 
operational profile I is characterised by a sequence of input values 
to the program (e.g. one input vector per test execution). Given 
sufficient program test cycles, we assume that an input profile I 
results in a specific profile of execution rates Q over the program 
segment, i.e. Q = {q(1), q(2), ...} for the segments in the program. 
Note that q(j) can exceed unity as segments inside subroutines and 
loops can be executed many times per test. 

3.1 Scaling the bound for a different execution 
rate profile 

From equation (4) we have shown that the failure probability per 
test is bounded by: 
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If fault i is located in a single segment j (assumption 1) then the 
faulty code will be executed q(j) times per test. If we assume the 
failure probability of the faulty code per test is proportional to q(j) 
(assumption 2), then for a new execution profile Q' in subsequent 
operation, the failure probability per test under the new profile 
becomes: 
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This assumption about scaling is open to challenge. It implies that 
if q(j) is unchanged then λj cannot change. However λj can 
change without changing q(j) if failure-causing values are 
increased and failure-avoiding values are decreased. Assumption 
(4) implies that this does not occur.  
In the worst case, the failure probability increases linearly with 
q'(j) if all failures are disjoint, but there is a limit—the failure 
probability of a fault cannot exceed unity, i.e. strictly: 
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If this occurs, then equation (5) over-estimates the effect of 
increasing q'(j), so the linear scaling assumption is conservative. 
A similar issue arises when the same segment is executed several 
times per program test (e.g. in a loop). Multiple segment failures 
in the same test will not increase the observed failures, i.e. the 
failures are not disjoint. Again, the assumption of linearity over-
estimates the scaling effect, so equation (5) is conservative. 
If we assume that the probability of a fault per line is constant 
(assumption 3), the probability that a fault is located in segment j 
is: 

LjLfaultP j /)()( =  (6) 

where L(j) is the length of the basic block of code, and L is the 
length of all blocks in the program, ΣL(j). Using this assumption, 
we can compute a mean value for the re-scaled bound of a 
program fault under Q': 
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In the worst case, the failures of the N individual faults in the 
program are disjoint, so the rescaled bound on the failure 
probability of the whole program is: 
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The original bound under the test profile Q, was: 
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So the mean scale-up factor (S) for the bound under the new 
profile Q' relative to the bound under the test profile Q is: 

)(/)(),( TTQQS θθ ′=′  

Hence: 

∑ ⋅
′

=′
L

jL
jq
jqQQS )(
)(
)(),(  (8) 

From equation (8) it follows that the scale factor is always unity 
when Q′=Q, and in general, overall scale-factor is simply the 
length-weighted mean of the scale factors for individual segment 
executions. 

3.2  Impact on failure rate bounds 
What are the implications of this? Let us take a simple example: a 
one level binary tree where there are 10 lines of code in each 
segment, i.e. L(j)=10. This tree has three segments: a root segment 
and two branch segments. We will now define a set of execution 
rates Q for the segments in the table below. 



Table 1.  Execution rates (even branch split) 

Segment j L(j) q(j) 
0 (root) 10 1 
1 (branch) 10 0.5 
2 (branch) 10 0.5 

 
Now let us define an alternative set of execution rates Q′. 

Table 2. Execution scale factors (uneven branch split) 

Segment j L(j) q′(j) 
0 (root) 10 1 
1 (branch) 10 0.99 
2 (branch) 10 0.01 

 
In the following table we compute the scale-up terms, 
L(j)⋅q'(j)/q(j), according to equation (8) for two cases where: 

• the test and operation profiles are the same (test and 
operation both equal to Q)  

• the test profile is Q and the operation profile is Q' 

Table 3. Comparison of scale factors (balanced test profile) 

Segment j Test
q(j)  

q′(j) Operation 
using Q 

L(j).q(j)/q(j) 

Operation 
using Q' 

L(j).q′(j)/q(j) 
Root 0 1 1 10 10 
Branch 1 0.5 0.99 10 19.8 
Branch 2 0.5 0.01 10 0.2 
Sum   30 30 
S =Sum/L   1 1 
 
The final scale factor S is derived by dividing the length-weighted 
scale-factor by the program length L. As expected, if we use the 
same profile for test and operation the scale-up factor is unity, i.e. 
we get the same bound for the failure probability. 
Perhaps more surprisingly, there is no increase in the bound when 
a different execution rate profile is used. This occurs if the 
program is “fairly” tested so that the scale-up of the mean failure 
bound in one branch is exactly matched by the scale-down in the 
other branch. Assume for example that there are two alternative 
branch segments j and k with segment execution rates q(j) and 
q(k), if we change the profile so that all the execution flows down 
j then q'(j) = q(j) + q(k) and q'(k)=0. In the segments were “fairly” 
tested under Q, then the re-scaled bounds will be identical to the 
original ones. This will occur when: 
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Rearranging this occurs when: 
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This condition is satisfied in the example shown in Table 3 as the 
branch lengths and execution rates are equal. 
Now let us look at the converse situation where the test profile is 
very uneven. Let us suppose that the asymmetric Q' was used for 
testing. We can compute the scale factors when using profiles Q' 
and Q in subsequent operation, as shown in the following table. 

Table 4. Comparison of scale factors (uneven test profile) 

Segment j Test 
profile
q′(j) 

 
q(j) 

Operation 
under Q' 

L(j)q′(j)/q' (j) 

Operation 
under Q 

L(j)q(j)/q′(j) 
Root 0 1 1 10 10.0 
Branch 1 0.99 0.5 10 5.1 
Branch 2 0.01 0.5 10 500 
Sum   30 515.1 
S = Sum/L   1 17.2 
 
Using the same profile for test and operation still results in a scale 
factor of unity, but the scale factor increases markedly when a 
different profile is used in operation (i.e. 17 rather than 1). The Q' 
profile is very “unfair” test profile. The ratio of branch execution 
rates is 99 while the ratio of the branch lengths is unity. If the low 
usage branch becomes more heavily used under the new profile, 
this increases the maximum failure rate bound for the overall 
“program” of three branches.  
In the converse case where a well-tested branch becomes more 
heavily used in operation, the scale factor can be less than unity. 
For example, if Q had branch execution rates of 0.3 and 0.7 and 
Q' had execution rates of 0.0 and 1.0, it can be shown that the 
scale factor is 0.81. 
Let us now apply this idea of “fair testing” to a more complex 
program flow structure. For a program graph with multiple 
branches, the execution rates should be apportioned to the length 
of code “dominated” by that branch, i.e. include sub-branches that 
can only be executed from that branch. This illustrated in the 
figure 4 below. 
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Figure 4. Fair test profile example 



Node A dominates 30 lines of code in the lefthand branch and 140 
lines in the righthand branch, so the execution rate is split in the 
ratio 30:140, i.e. 3/17 to the left and 14/17 to the right. At node B, 
the ratios of code dominated are 10:110 so the input execution 
rate of 14/17 is further split (1/12 to the left, 11/12 to the right). 
Finally at node C, the ratio is 10:90, the execution rate at node C 
is further split (1/10 to the left, 9/10 to the right).  
Let us now compute the scale up factors for some different 
execution profiles, namely: 

• Shortest path — all the executions flow down A.left 

• Longest path — all the executions flow down A.right, 
B.right, C.right 

• Even—execution rate split evenly at each node 
The execution rates of the test profile and new profiles are shown 
in the table below. 

Table 5. Fair test profile and alternative profiles 

q(j) q' (j) Code segment 
(j) fair shortest longest even 

A.left 0.176471 1 0 0.5 
A.right 0.823529 0 1 0.5 
B.left 0.068627 0 0 0.25 
B.right 0.754902 0 1 0.25 
C.left 0.07549 0 0 0.125 
C.right 0.679412 0 1 0.125 

 
The scale factors computed for the new execution profiles are 
shown below. 

Table 6. Scale factors for alternative profiles 

q' (j)/q(j)*L(j) Segment (j) 
shortest longest even 

A.left 170 0 85.00 
A.right 0 24.29 12.14 
B.left 0 0 36.43 
B.right 0 13.25 3.31 
C.left 0 0 16.56 
C.right 0 132.47 16.56 
Sum 170 170 170 
S (Sum/L) 1 1 1 

 
This demonstrates that fair testing is theoretically possible for an 
arbitrary branch structure, but unfortunately, it is unlikely to be 
possible for programs in general. Equation (9) does not explicitly 
address cases where the segment is in a subroutine or a loop. In 
addition, fair apportionment may be prevented because the branch 
decisions may not be independent. These issues are discussed 
below. 

3.2.1  Impact of loops 
Increasing the number of loop iterations in the Q' profile will 
increase q'(j) in all segments within the loop, and hence increase 

the failure intensity, so the scale factor cannot be unity. “Fair 
testing” is only feasible if all program loops have a fixed number 
of iterations, so that q(j) and q'(j) loop segments are scaled by the 
same factor and unit scale factor can be preserved under a 
different profile. On the other hand, it may be possible to define a 
“nearly fair” test profile where loops are executed the maximum 
number of times. In this case, the scale factor for a a different 
profile could be less than unity.' 

3.2.2  Impact of subroutines 
In the case of calls to a subroutine, substituting the length of the 
subroutine Lsub into the flow graph branch is not appropriate as the 
mean failure probability bound for the subroutine is associated 
with the total execution rate of the subroutine over all calls. The 
bound for all calls is: 
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If a particular program segment calls a subroutine at a rate qcall, 
under the scaling assumption the mean bound on the failure 
probability for that call statement in the segment is: 
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where qsub is the total number of executions of the subroutine per 
program test. Hence the failure probability per test of the 
subroutine has to be apportioned between the call statements, i.e. 
the length substituted into the flow graph is: 

Lsub qcall/qsub 
But as qsub = Σqcall over all segments that call the subroutine, a fair 
apportionment of execution rates is difficult. Any change in qcall 
in one segment will affect qsub and hence “unbalance” the 
apportionments in all other segments that call the routine. One 
possible approximation for including the effect of subroutines 
when calculating a balanced profile is to use Lsub/ncall for the 
length at each call, where ncall is the number of different calls to 
the subroutine that exist in the source code. This allows the rates 
to be apportioned independently and will be reasonably accurate 
if all qcall rates are similar. 

3.2.3  Dependency between decision nodes 
Even if some algorithm can be devised that can compute a 
balanced execution profile for a complete program, it is unlikely 
that a test profile can be constructed that can achieve it, because 
there are dependencies between decision nodes. Take the 
following C code example: 
if (a > 10) action1a() else action1b(); 
if (a > 20) action2a() else action2b(); 

The dominated branches from (a > 10) are action1a() and 
action1b(). Selecting values of a to ensure the first decision node 
is balanced may make it difficult to ensure the dominated 
branches of next decision node are balanced. If for example, a 
balanced profile for the first decision node requires (a > 10) to be 
true 50% of the time and (a > 20) to be true 90% of the time, we 
have a contradiction as (a >10) is always true when (a > 20). 
The same problem can exist when there are dependencies between 
subroutines. 



3.3  Incorporating additional test data 
While it may be infeasible to devise a balanced profile by testing 
the whole program, unit and module test can improve the 
coverage of infrequently used code segments and hence improve 
the “fairness” of the execution profile. Assuming that segment j 
has been executed x(j) times in module testing and q(j)⋅T times in 
program testing under profile Q, it can be shown that the scale 
factor under a new profile Q' is: 
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It can be seen that equation (10) is a simple extension of equation 
(8) that includes an extra term for module test coverage. It can be 
seen that extra tests always reduce the reliability bound, but the 
maximum improvement is achieved where q(j) is small. 

3.4 Estimating the maximum scale factor 
relative to a test profile 

The previous analysis indicates that it is theoretically possible to 
design “fair” test profiles where the worst case failure probability 
is insensitive to changes in the profile in subsequent operation. 
However this only applies to very artificial program structures, 
and it is unlikely that a perfectly balanced profile can be achieved. 
The situation could be improved if individual subroutines are 
tested independently at the module test stage. These results could 
be incorporated into the integrated test profile using equation (10) 
to make it more “fair”. But even with such improvements, it may 
be impractical to achieve a fair test profile as we still have to 
allow for subroutines and loops, so it would be useful if we could 
derive the worst-case scale-up for an arbitrary test profile. We 
have shown in equation (8) that the scale-up of reliability bound 
when using an operational profile Q′ rather than a test profile Q 
is:  
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We know that, for each code segment, there is some maximum 
execution rate, q(j)max. For non-looping unconditional code 
segments, the code segment can only be executed once per 
program test, so q(j)max is unity. For code in loops or subroutines, 
q(j)max will be the maximum loop count or call count. There are 
also cases where the maximum rate is much less than unity, e.g. 
defensive code (q(j)max = 0) and initialisation code (q(j)max = 1/T). 
So to determine the maximum scale-up factor we need to identify 
a worst-case execution rate profile Qmax that maximises S. The 
worst-case profile would actually be a single path (K) through the 
program tree such that: 

S(Qmax,Q) = ∑ ( q(k) max L(k) / q(k) ) / L 
is maximised, i.e. where k represents all segments in path K, and 
q(k)max is the maximum possible execution rate of the segment. 
This could be a hard problem to solve in general. An exact 
solution requires an in-depth analysis of the program structure to 
find all possible paths, and we should only identify paths that are 
feasible. Take, for example, the following C code fragment: 

1. if (val > HILIM)  
2.   {val = HILIM}; 
3. if (val < LOLIM) 
4.   {val = LOLIM}; 
It is clear that val cannot satisfy both conditions (i.e. it cannot be 
high and low at the same time), so a worst case path K that 
executes segments 2 and 4 is not feasible.  
Since it is difficult to determine which segments k are included in 
the worst-case path, we can set a conservative upper bound by 
summing over all program segments, i.e.: 

S(Q′,Q) < ∑ ( q(j) max L(j) / q(j) ) / L (11) 
where j is any segment in the program. This bound should apply 
regardless of the profile Q′ used in subsequent operation. 

3.5 Handling non-executed code segments 
If a code segment i is never executed in T tests, the observed 
execution q(i) rate is zero. Clearly any q(i) of zero would result in 
an infinite scale factor using equation 8 then q′(i) is non-zero. 
Ideally, this should never occur as all executable segments should 
be covered (e.g. by including extra module tests using equation 
10). However, there is an alternative way of handling non-
executed segments. We can split the segments into two classes 
indexed by c (covered segment) and u (uncovered segment). A 
fault in an uncovered segment could have a maximum failure 
probability of unity when the segment is executed. However a 
failure can only occur if a fault is present and the segment is 
executed, hence the maximum expected failure intensity after T 
tests is: 
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while for covered segments, the bound on the expected failure 
intensity is: 

)(
)()()(

cqL
cqcL

eT
NTc ⋅

′
⋅≤′θ  

It follows that for an uncovered segment, the equivalent execution 
rate that should be used in equation 8 to derive the scale factor is: 

eT
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4.  EXPERIMENTAL EVALUATION OF 
THE SCALING THEORY  

The theory presented in the previous sections suggests that 
programs tested with a “fair” profile should be less sensitive to 
profile changes than programs tested with an “unfair” profile. We 
have also given a method for bounding the worst-case change in 
the failure rate for any new profile given knowledge of the 
execution profile under test. 
To assess whether this occurs in practice, and also to check the 
conservatism of the bounding formula, we derived the scale-up 
factors for a range of distributions and compared them with the 
scaled worst-case bounds predicted by equation (7) for two 
different programs. 



4.1  Application to the PODS TRIPV program 
The scale-up evaluation used the TRIPV program used in the 
PODS experiment [1]. This program computes a reactor power 
value from a number of analogue inputs and then performs a 
reactor trip decision calculation The original Fortran TRIPV 
program was converted to C to facilitate testing on a modern 
computer. The program was then instrumented to measure 
segment coverage and was tested over 10 000 program cycles 
with the following sets of random input data: 

• uniform random (where all analogue input values have equal 
probability)  

• normal (where the input values are taken from a normal 
distribution so the central values are most probable) 

• inverse normal (a “bath-tub” distribution where the outer 
edge values are the most probable) 

The segment execution rate profiles for the program under 
different input profiles are shown in figure 5 below. To aid 
comparison, the segments denote by j on the x axis are ordered by 
decreasing execution rate (for the case where the input data is 
uniform random data as depicted by the solid line in figure 5). 
Note that only the least executed segments are displayed in the 
figure. The highest execution rate segments tend to have very 
similar values (e.g. fixed loops and code on the main program 
path are always executed and hence the rate per program 
execution is constant regardless of the input profile). 
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Figure 5. Segment execution rates /cycle for different input 
distributions (averaged over 10 000 program cycles) 

As we can see from figure 5, the inverse normal input profile 
tends to produce the highest execution rates for most segments 
while the normal input distribution has a larger proportion of low 
(and zero) execution rates. This is not too surprising—most of the 
boundary conditions occur near the edge of the input range, so 
boundary checking code segments are activated more often with 
the inverse normal distribution. Conversely the normal 
distributions tend to select central values, so boundary values are 
selected less frequently.  
Some segments are not executed at all. In most of these cases, 
segment execution is impossible (i.e. they are defensive checks 
against infeasible values) but in the case of the normal 
distribution, 6 feasible code segments are never executed (out of 
140 feasible segments). For these non-executed segments we used 
equation (12) to derive an equivalent execution rate of 0.00037 
per test (i.e. 1/eT, where T=10 000). 

4.1.1  Sensitivity to changes in input profile 
Figure 5 suggests that the inverse normal input distribution is the 
“fairest” as it tends to have a higher execution rate for most 
segments. However there are exceptions where the rates can be 
dramatically lower than the rate under a random distribution, and 
as we have noted earlier, it is the least executed segments that 
have the dominant effect.  
To assess which distribution is the fairest (i.e. least sensitive to 
changes in profile), we computed the scale-up factors for pairs of 
input distributions used in the TRIPV coverage experiment (one 
as the initial test profile, the other as the operational profile). 
Equation (8) was used to compute the scale-up factors, and the 
results are shown in the table below. 

Table 7. Scale factors for different combinations of test and 
operational profiles (PODS) 

Test profile  Operational profile 
 uniform inverse normal normal 
uniform 1.00 1.21 0.90 
inverse normal 3.20 1.00 6.17 
normal 114.86 345.97 1.00 
 
It can be seen that tests with uniform random data are the least 
sensitive to change. Perhaps surprisingly there is a scale-up factor 
of less than unity when normal data is used as the operational 
profile. This “scale-down” effect can occur with an “unfair” 
profile used in operation, because the average program path can 
be shorter than the average under the test profile (and hence, on 
average, encounters fewer faults). 
It can be seen that the normal input distribution is the most 
sensitive to change. This is to be expected as exception conditions 
at extreme input values are relatively poorly tested (and in some 
cases not at all). We can also see that the greatest scale-up occurs 
when we test with normal data but have an operational profile that 
is inverse normal. In this case, the scale-up factor can be between 
one and two orders of magnitude. 

4.1.2  Maximum scale-up prediction 
Equation (11) gives the maximum scale-up relative to a specific 
test profile. The program was analysed to determine the maximum 
possible execution rate for each segment, q(j)max, to account for 
the execution of loops and multiple calls to subroutines. This was 
comparatively easy to derive as the program has a simple 
structure with fixed loops and a fixed number of calls to 
subroutines. We also had to set q(i)max to zero for non-executable 
defensive code, and also set q(j)max = 0.0001 for initialisation code 
(since it is executed once in 10 000 tests). In the following table, 
the worst case scale factor predictions for different test profiles 
are compared with the observed scale-up factors achieved with 
different operational profiles. 



Table 8. Actual scale factors vs. predicted maxima  

Test profile Scale-up factor 
 Max actual 

scale-factor  
Max predicted 

scale factor  
uniform 1.21 6.6 
inverse normal 6.17 10.0 
normal 345.97 1059.3 

 
We do not know if there are other operational profiles that result 
in greater scale factors and there is some conservatism in the 
maximum scale factor prediction. Nevertheless, the actual scale 
factors are less than the predicted maxima and the general shape 
of the prediction mirrors the empirically observed scale-up. 
While the uniform random input distribution has the smallest 
scale-up bound, this distribution is not necessarily the optimum 
test pattern for a program. Achieving a fair distribution over the 
code segments requires knowledge of the decision points within 
each input range and it is likely that each input variable will need 
a different distribution to maximise fairness. To assess whether 
the uniform random profile was the “fairest”, we performed 
further segment coverage tests with intermediate distributions, 
namely “shallow” versions of the inverse normal and normal 
distributions. The table below shows the maximum scale factor 
prediction for all distributions. 

Table 9. Predicted maximum scale-up: different test profiles 

Test profile Maximum scale-up 
Inverse normal 10.0 
Inverse (shallow) 5.0 
Uniform 6.6 
Normal (shallow) 745.2 
Normal  1059.3 

 
This suggests that (for this program at least) a slight bias towards 
the extremes of the input range can improve the overall fairness of 
the execution rates over the code segments. This seems intuitively 
reasonable as quite a lot of the program logic is associated with 
range checks that occur at the extremes of the input range. It is 
likely that further tuning of the distributions on individual inputs 
could improve fairness even further. 
We can compare these scale-up bound predictions against the 
mean reliability growth for the 12 known faults in PODS. The 
mean failure probability of a program after T tests is modelled by: 

)exp()( TT ii λλθ −=∑  (13) 

for all faults i in the program, where λi is the probability of failure 
per test of fault i. This assumes that the failures of all 12 are 
disjoint (the worst case). 

The values of λi for all 12 faults in the PODS TRIPV program 
were established by performing long term failure rate 
measurements under uniform, normal and inverse normal 
(“bathtub”) input profiles with a single fault activated for each 
measurement. We then computed the mean failure probability of 
the set of faults after different numbers of tests T for each profile 

using equation (13). This is effectively a virtual reliability growth 
experiment that makes use of the known failure rates of the faults. 
The growth curves are shown in figure 6 together with the worse 
case bound prediction, N/eT, for the failure probability from 
equation (4). This bound is independent of the test profile 
provided that the profile is not changed. 
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Figure 6. Reliability growth (different profiles) vs worst case 

bound 
It can be seen that, regardless of the test profile chosen, the failure 
probability is always below the predicted worst case bound. 
 We can also compute the effect of switching to a different profile 
after T tests. If at time T, a new profile is used, the mean failure 
probability will be: 

)exp()( TT ii λλθ −′=′ ∑  (14) 

where λ′i is the failure rate (per program test) of the fault under 
the new profile. 
 In figure 7 below we show the failure rate under the “normal” 
test profile and the effect of switching to the “uniform” profile 
after T tests for subsequent operation.  
The “Test” plot shows the mean reliability growth if the “normal” 
input profile is used for testing (equation 13). The “Operation” 
plot shows the mean reliability if the profile is switched to the 
“uniform random” profile (equation 14) after T tests. Figure 7 also 
shows: 

• the standard bound (equation 4) under the test profile 

• the scaled bound for a switch to the uniform random profile 
(from Table 7 and equation 14) 

• the maximum scaled bound (Table 8 and equation 11) that 
applies to a switch to any other profile. 
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Figure 7. Change in reliability: “normal” test profile followed 

by “uniform” operational profile  
It can be seen that there is a very large increase in failure 
probability when the input profile is changed to uniform random, 
but the failure rates are within the predicted bounds. 
We repeated this virtual reliability growth experiment using 
“uniform random” as the test profile, and switching to the 
“normal” profile for subsequent operation (see figure 8).  
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Figure 8. Change in reliability: “uniform” test profile 

followed by  “normal” operational profile  
As before, the original, scaled and maximum bounds are plotted 
on the same graph. It can be seen that when the profile is switched 
to the “normal” input profile the failure probability actually 
decreases. This is reflected in the re-scaled bound for a “normal” 
profile which also decreases slightly. As discussed earlier a 
reduced scale factor is possible when the well-tested segments are 
heavily used in operation. So, as predicted by the theory, the 
“fairer” test profile produces a program that is less sensitive to 
changes in the operational profile. 

In both virtual experiments, the reliability bound equation (4), is 
successful in bounding the reliability growth under a fixed profile, 
and the scale-up bound equations (8 and 11) successfully bound 
the reliability changes when a new operational profile is used. 

4.2  Application to PREPRO 
The same type of experimental evaluation was applied to the 
PREPRO example. This was an offline program from the 
European Space Agency that had been used in an earlier 
reliability experiment [8]. This program computes the 
performance of an antenna array. This antenna array is specified 
in a special language which is parsed by the PREPRO program. A 
test generator was available that could generate random antenna 
descriptions of varying complexity. We instrumented this 
program and measured the test coverage under two different 
profiles (P1 and P2) produced by a modified random test case 
generator that could vary the occurrence rates of different antenna 
features. 
Using equation (8), the predicted scale-ups for PREPRO were: 

Table 9. Scale factors for the PREPRO example 

Test  
profile 

Operational 
profile 

Predicted scale 
factor 

P1 P2 1.1 
P2 P1 3.8 

 
We could not compute a maximum scale factor as the program 
was recursive, so the segment execution rates were unbounded. 

We measured the failure rate λi for 28 known faults in PREPRO 
under profiles P1 and P2. As in the PODS example, we then 
computed the mean failure probability expected when tested 
under one profile, and the expected failure probability if there is a 
switch to a new profile after time T. 
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Figure 9. PREPRO evaluation: (P1 test, P2 operation) 

In figure 9, we show the reliability growth when the program is 
tested under the “fairer” profile P1 and the impact of changing to 
profile P2. We also show the predicted reliability bounds under 



the test profile P1 and the scaled bound under the operational 
profile P2.  
It can be seen that the failure rate under P2 is less than under the 
original profile (an effect also observed in PODS). This is 
consistent with the relatively small scale-up factor of 1.1 
predicted by the scale-up theory. 
For the converse case where the “unfair” profile P2 is used for 
testing and P1 is used in operation the predicted scale factor 
S(P1,P2) is 3.8 so we would expect a significant increase in 
observed failure probability when profile P2 is used in place of 
P1. Figure 10 shows the results of using P2 for testing then 
switching to profile P2. 

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

Tests T

Fails/test

Bound
Scaled boundP1 (operation)

P2 (test)

 
Figure 10. PREPRO evaluation: (P2 test, P1 operation) 

So both the PODS the PREPRO results are consistent with the 
reliability bound scaling theory. 

5.  APPLICABILITY OF RESULTS 
This paper has extended the reliability bound theory developed in 
[2]. In the extended theory: 

• The reliability bound prediction in [2] can be re-scaled for a 
different operational profile provided the program segment 
execution rates can be measured under both profiles. 

• The scaling theory can include module test information as 
well as tests applied to the entire program. 

• If it is possible to set an upper bound on the execution rates 
of all program segments, it is possible to compute a scaled-
up reliability bound that would apply to whatever 
operational profile is chosen. 

• For some program structures it is possible to identify a 
totally “fair” test profile where there is no change in the 
reliability bound whatever operational profile is used. But in 
practice it is unlikely that perfectly fair test profiles can be 
achieved for realistic programs. 

The experimental evaluation appears to be consistent with the 
predictions of the theory, but the theory needs to be tested on a 
range on different software examples. In addition the assumptions 

necessary to develop the re-scaling theory could be viewed as 
extreme and unlikely to be applicable in practice. It will be 
necessary to check the impact of violations of the underlying 
assumptions. Some of the effects of assumption violations are 
discussed below: 

• Assumption (1) states that faults are localised to basic block. 
This assumption makes it easy to re-scale the failure 
intensity of a faulty block for a new profile. In practice,  
failures due to a single fault can be spread over many blocks, 
e.g. due to incorrectly initialised data. This may not have a 
major effect on the scaling prediction as the scale factor is 
actually a weighted average over all blocks. A hypothetical 
fault that causes failures in all blocks should have a scale 
factor equal to the mean scale factor. By comparison, scaling 
for localised faults can depart from the average (although the 
scaling factors averaged over all faults should be close to the 
predicted mean value). On this basis, we would expect less 
variation in scale factors for non-localised faults. So 
violations of assumption (1) do not necessarily invalidate the 
results. 

• Assumption (2) that the probability of failure per test is 
proportional to segment execution rate is questionable. If the 
segment is executed several times per test, the scaling could 
result in a failure probability greater than unity. However in 
these cases, the predicted scale-up is greater than the actual 
scale-up so the scale bound is conservative. 

• Assumption (3) that faults are equally likely in all lines of 
code is also debatable. It is known that fault density can 
increase in complex code modules. However this may not 
matter; the scale factor is an average over the entire program 
flow graph. Uneven distribution of the faults will only have 
an effect if the fault density is correlated with the scale-up 
factors for individual segments.  

We should also note that the computed scale factor is a mean not 
a maximum. There is a finite probability that all N faults are 
located in the segment with the worst scale-up factor. However, 
the probability that all faults are located in the highest scale-up 
segment decreases rapidly as N increases. This effect would also 
be less severe if the faults were non-localised. 
The limited analysis above suggests that assumption violations 
may not have a major effect (or are conservative), but further 
analysis is needed. 
Current software engineering practice favours the use of a 
realistic operational profile [6] for testing the integrated system. If 
this profile is correctly defined then the reliability achieved in the 
field should match that observed in development. However our 
theory indicates that if the expected operational profile is “unfair” 
then the field reliability could be extremely sensitive to changes 
in the operational profile (in the PODS TRIPV evaluation, 
changes of several orders of magnitude were predicted and 
observed). A radical alternative to realistic testing would be the 
use of “fair testing” as this would result in profile-independent 
reliability bounds. However there are considerable technical 
barriers to the identification, feasibility and implementation of 
perfectly fair test profiles and the theory is based on assumptions 
that have not been evaluated on realistic programs. So it would be 
undesirable to abandon realistic testing in favour of “nearly fair” 
random testing.  



However the theory could help to reduce sensitivity to changes in 
the profile during operation. Possible strategies are listed below. 

• Design tests that execute the least used program segments (to 
fill “holes” in the segment execution profile). The theory 
indicates that it is the least used paths that pose the greatest 
risk when the profile changes. Additional testing of the least 
used and unused code segments should reduce sensitivity to 
changes in operational profile. 

• Include module test results using equation (10) when 
estimating the reliability bound. Module tests can be used to 
achieve a fairer execution coverage.  

• Estimate the sensitivity of the test profile by using maximum 
scale-up formula (equation 11). The sensitivity of the bound 
could then be assessed as part of the software acceptance 
process. 

• Monitor the execution profile during operation. If the 
operational and test execution profiles are known, the worst 
case reliability bound can be adjusted to accommodate the 
difference using equation (7). 

The theory could also be relevant to module testing. To limit 
sensitivity to changes in reliability in operation, module tests 
should be as fair as possible and, from equation (10), the number 
of segment executions should be increased beyond that needed to 
achieve full coverage. 

6.  SUMMARY AND CONCLUSIONS 
The reliability bound theory developed in [2] has been extended 
to include changes in operational profile. The theory can predict 
the change in the reliability bound for a specific operational 
profile and for a worst case profile. Perhaps the most surprising 
aspect of the theory is that, in principle, there can be “fair” test 
profiles that produce programs that are insensitive to changes in 
the operational profile. An experiment assessment of achieved 
reliability using different test and operational profiles appears to 
be consistent with this theory.  
Given the novelty of the theory, the assumptions and practical 
testing constraints, we do not think fair testing can replace tests 
using a realistic profile. However, the results of the theory can be 
used to assess and potentially reduce the sensitivity of the 
delivered program to unexpected changes in the operational 
profile. 
To develop the theory it was necessary to make a number of 
additional assumptions about the behaviour of faults that are 
debatable. However a limited analysis of the assumptions suggest 
that the results of the theory seem to be relatively robust to 
assumptions violations.  

Further work is needed to evaluate the theory on different 
software examples and to assess the impact of departures from the 
theory assumptions. It would also be useful to explore the 
feasibility of deriving and implementing “fair” test profiles for 
realistic programs. 
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