
Rescaling Reliability Bounds for a New Operational Profile
Peter G Bishop

Centre for Software Reliability and Adelard
City University, Northampton Square

London, EC1V 0HB, UK
+44 (0)20-7490-9467

pgb@csr.city.ac.uk, pgb@adelard.co.uk

ABSTRACT
One of the main problems with reliability testing and prediction is
that the result is specific to a particular operational profile. This
paper extends an earlier reliability theory for computing a worst
case reliability bound. The extended theory derives a re-scaled
reliability bound based on the change in execution rates of the
code segments in the program. In some cases it is possible to
derive a maximum failure rate bound that applies to any change in
the profile. It also predicts that (in principle) a “fair” test profile
can be derived where the reliability bounds are relatively
insensitive to the operational profile. In addition the theory allows
unit and module test coverage measures to be incorporated into an
operational reliability bound prediction. The implications of the
theory are discussed, and the theory is evaluated by applying it to
two example programs with known faults.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: reliability, statistical
methods; D.2.5 [Testing and Debugging] coverage testing

General Terms
Reliability, Theory, Experimentation

Keywords
Operational profile, operational reliability testing, worst case
bounds.

1. INTRODUCTION
One of the main problems with reliability testing is that the result
is specific to a particular operational profile. This paper extends
an earlier worst case bound reliability theory to allow the bound
to be re-scaled for a new operational profile. The paper will first
show that the original worst case bound theory (for continuous
time) also applies to discrete tests, and then present the extensions
of the theory for re-scaling the bound to a new operational profile.

The implications of the theory are discussed, and the theory is
evaluated by applying it to example programs with known sets of
faults.

2. WORST CASE BOUND THEORY
The observed reliability of a system containing design faults is
based on three main factors:

• the number of faults

• the size and location of faults

• the input distribution (operational profile)
This is illustrated in figure 1 below.

Operational
profile (I)

Defect

Observed
defect
failure
frequency

λ1

λ2

λ3

D1

D2

D3

Input Domain

Figure 1. Operational profile and software failure rates

While there are many methods for estimating the likely number of
software defects N, there is no way to establish the failure
frequencies λ1 .. λΝ for unknown software defects under a given
input distribution I. However the theory developed in [2] can
place a worst case bound on the failure rate for all the defects
based on the amount of usage time. The theory makes the
relatively standard reliability modelling assumptions that:
a) removing a fault does not affect the failure rates of the

remaining faults
b) the random failure frequencies of the faults can be

represented by λ1 .. λΝ, which do not change with time (i.e.
the input distribution I is stable)

c) any fault exhibiting a failure will be detected and corrected
immediately

The basic idea behind the model is very simple; once the software
has been operating for some time, faults with the highest failure
frequencies are likely to be removed, while faults with low failure
frequencies only make a small contribution to the residual
software failure frequency. Thus for a given number of test
executions, T, there is a worst case λ which maximises the
probability of the failure on the next test.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSTA ’02, July 22-24, 2002, Rome, Italy
Copyright 2002 ACM

Put more formally, using the assumptions given above, for a
defect i with a probability of failure per program test of λi, the
probability of observing a failure after T prior tests is:

T
iiii TTP)1()|1(λλλ −=+= (1)

where Ti is the test where the defect is detected (and removed).

Differentiating with respect to λi, it can be shown that the
maximum failure probability after T tests occurs when:

1
1
+

=
Tiλ

Substituting back into (1) and rearranging, the upper bound on the
probability of failure after T tests is:

1

1
111)1(

+









+
−≤+=

T

i TT
TTP (2)

There is a standard result that 1+





→x
n

e
n

x as n → ∞ .

As the ex asymptote is an upper bound, it follows that, for all T:

T
eTTP i

1

)1(
−

<+=

If we define θi (T) as P(Ti=T+1), the probability of failure per test
after T tests, then:

eT
Ti

1)(<θ (3)

This bound is independent of the defect failure probability. Figure
2 below illustrates this independence for different values of λi.

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000
Tests T

Probablity
of failure
after T
tests

λ =0.1
λ =0.01
λ =0.001
1/eT

Figure 2. Illustration of the worst case bound

It is clear that, regardless of the value of λι, the probability of
failure per test after T tests, θi (Τ), is bounded by 1/eT.

In the worst case, the failures of all faults are disjoint, so we can
sum the bounds for all N faults to derive a worst case bound for
the probability of program failure after T tests, θ(T), i.e.:

eT
NT)(<θ (4)

This is the discrete equivalent of the continuous time bound
equation in [2] where the bound on failures per unit time after a
test time t is shown to be exactly N/et (or alternatively the bound
on the MTTF after a test time of t, MTTF(t), is exactly et/N).
The result is surprising because it permits long-term reliability
predictions to be made at t=0. If the model assumptions apply and
we can estimate the number of faults N at the time of release (e.g.
using estimation methods such as [3], [4], [7], [9]) the reliability
growth can be bounded at any time in the future. Note that the
theory does not tell us when (or even if) the faults will be found,
but it does set a quantitative bound on the probability of program
failure after testing and this bound always decreases with
increasing tests (or operating time).
Figure 3 shows the application of the theory to the field reliability
data of a commercial teleswitch [5]. The reliability bound is based
on an estimate for N that is 50% more than the number of detected
faults reported in [5]. The bars represent the measurement
uncertainty in taking the average of several times to failure to
estimate the current MTTF.

0.00

0.01

0.10

1.00

10.00

0.01 0.10 1.00 10.00 100.00

Usage Time (years)

MTTF
(years)

Figure 3. Reliability growth of a commercial teleswitch

The effect of violating theory assumptions (a) and (c) were
examined in [2]. Both correction-induced faults and variations in
the operational profile can alter the bound and cause a “saw-
tooth” pattern of failure rates. It was however also shown that the
worst bound should still hold over time periods that are longer
than the short term fluctuations caused by changes in operational
profile.
However the theory cannot predict what the reliability bound will
be after a major change in the input profile (e.g. from
development testing to operation). For example, in figure 3 above,
there is a sudden drop in reliability after 0.1 years of usage. This
might be due to a transition from field trials to full operational
use—a point where there could be a dramatic change in the
operational profile and where the standard reliability bound

prediction does not apply. The remainder of this paper describes
an extension to the worst case bound theory that allows the
reliability bound to be “re-scaled” to predict the effect of a
transition to a different operational profile.
Note that this extension to the theory predicts the change in
reliability bound immediately after the change in profile (with no
fault correction). If detected faults are corrected immediately in
subsequent operation then, given sufficient usage time with an
unchanged profile, the bound will eventually fall back to the
original bound of N/et.

3. EXTENDED THEORY
The extended theory makes some additional assumptions:
1) Each fault is localised to a single code segment, i.e. is in a

“basic block”.
2) The externally observed failure rate is proportional to the

execution rate of the faulty code segment.
3) There is a constant probability of a fault existing in any line

of executable code.
4) The operational profile I can be characterised by the

distribution of code segment executions in a program Q.
The final assumption requires some further explanation. The
operational profile I is characterised by a sequence of input values
to the program (e.g. one input vector per test execution). Given
sufficient program test cycles, we assume that an input profile I
results in a specific profile of execution rates Q over the program
segment, i.e. Q = {q(1), q(2), ...} for the segments in the program.
Note that q(j) can exceed unity as segments inside subroutines and
loops can be executed many times per test.

3.1 Scaling the bound for a different execution
rate profile

From equation (4) we have shown that the failure probability per
test is bounded by:

eT
Ti

1)(<θ

If fault i is located in a single segment j (assumption 1) then the
faulty code will be executed q(j) times per test. If we assume the
failure probability of the faulty code per test is proportional to q(j)
(assumption 2), then for a new execution profile Q' in subsequent
operation, the failure probability per test under the new profile
becomes:

eTjq
jqTi

1
)(
)()(

′
<′θ (5)

This assumption about scaling is open to challenge. It implies that
if q(j) is unchanged then λj cannot change. However λj can
change without changing q(j) if failure-causing values are
increased and failure-avoiding values are decreased. Assumption
(4) implies that this does not occur.
In the worst case, the failure probability increases linearly with
q'(j) if all failures are disjoint, but there is a limit—the failure
probability of a fault cannot exceed unity, i.e. strictly:








 ′
<′

eTjq
jqTi

1
)(
)(,1min)(θ

If this occurs, then equation (5) over-estimates the effect of
increasing q'(j), so the linear scaling assumption is conservative.
A similar issue arises when the same segment is executed several
times per program test (e.g. in a loop). Multiple segment failures
in the same test will not increase the observed failures, i.e. the
failures are not disjoint. Again, the assumption of linearity over-
estimates the scaling effect, so equation (5) is conservative.
If we assume that the probability of a fault per line is constant
(assumption 3), the probability that a fault is located in segment j
is:

LjLfaultP j /)()(= (6)

where L(j) is the length of the basic block of code, and L is the
length of all blocks in the program, ΣL(j). Using this assumption,
we can compute a mean value for the re-scaled bound of a
program fault under Q':

eTLjq
jLjqTi

1
)(

)()(')(' ⋅
⋅

⋅<∑θ

In the worst case, the failures of the N individual faults in the
program are disjoint, so the rescaled bound on the failure
probability of the whole program is:

eT
N

Ljq
jLjqT ⋅

⋅
⋅<∑)(

)()(')('θ (7)

The original bound under the test profile Q, was:

eT
NT <)(θ

So the mean scale-up factor (S) for the bound under the new
profile Q' relative to the bound under the test profile Q is:

)(/)(),(TTQQS θθ ′=′

Hence:

∑ ⋅
′

=′
L

jL
jq
jqQQS)(
)(
)(),((8)

From equation (8) it follows that the scale factor is always unity
when Q′=Q, and in general, overall scale-factor is simply the
length-weighted mean of the scale factors for individual segment
executions.

3.2 Impact on failure rate bounds
What are the implications of this? Let us take a simple example: a
one level binary tree where there are 10 lines of code in each
segment, i.e. L(j)=10. This tree has three segments: a root segment
and two branch segments. We will now define a set of execution
rates Q for the segments in the table below.

Table 1. Execution rates (even branch split)

Segment j L(j) q(j)
0 (root) 10 1
1 (branch) 10 0.5
2 (branch) 10 0.5

Now let us define an alternative set of execution rates Q′.

Table 2. Execution scale factors (uneven branch split)

Segment j L(j) q′(j)
0 (root) 10 1
1 (branch) 10 0.99
2 (branch) 10 0.01

In the following table we compute the scale-up terms,
L(j)⋅q'(j)/q(j), according to equation (8) for two cases where:

• the test and operation profiles are the same (test and
operation both equal to Q)

• the test profile is Q and the operation profile is Q'

Table 3. Comparison of scale factors (balanced test profile)

Segment j Test
q(j)

q′(j) Operation
using Q

L(j).q(j)/q(j)

Operation
using Q'

L(j).q′(j)/q(j)
Root 0 1 1 10 10
Branch 1 0.5 0.99 10 19.8
Branch 2 0.5 0.01 10 0.2
Sum 30 30
S =Sum/L 1 1

The final scale factor S is derived by dividing the length-weighted
scale-factor by the program length L. As expected, if we use the
same profile for test and operation the scale-up factor is unity, i.e.
we get the same bound for the failure probability.
Perhaps more surprisingly, there is no increase in the bound when
a different execution rate profile is used. This occurs if the
program is “fairly” tested so that the scale-up of the mean failure
bound in one branch is exactly matched by the scale-down in the
other branch. Assume for example that there are two alternative
branch segments j and k with segment execution rates q(j) and
q(k), if we change the profile so that all the execution flows down
j then q'(j) = q(j) + q(k) and q'(k)=0. In the segments were “fairly”
tested under Q, then the re-scaled bounds will be identical to the
original ones. This will occur when:

)()()(
)(

)()(kLjLjL
jq

kqjq +=+

Rearranging this occurs when:

)(
)(

)(
)(

kL
jL

kq
jq = (9)

This condition is satisfied in the example shown in Table 3 as the
branch lengths and execution rates are equal.
Now let us look at the converse situation where the test profile is
very uneven. Let us suppose that the asymmetric Q' was used for
testing. We can compute the scale factors when using profiles Q'
and Q in subsequent operation, as shown in the following table.

Table 4. Comparison of scale factors (uneven test profile)

Segment j Test
profile
q′(j)

q(j)

Operation
under Q'

L(j)q′(j)/q' (j)

Operation
under Q

L(j)q(j)/q′(j)
Root 0 1 1 10 10.0
Branch 1 0.99 0.5 10 5.1
Branch 2 0.01 0.5 10 500
Sum 30 515.1
S = Sum/L 1 17.2

Using the same profile for test and operation still results in a scale
factor of unity, but the scale factor increases markedly when a
different profile is used in operation (i.e. 17 rather than 1). The Q'
profile is very “unfair” test profile. The ratio of branch execution
rates is 99 while the ratio of the branch lengths is unity. If the low
usage branch becomes more heavily used under the new profile,
this increases the maximum failure rate bound for the overall
“program” of three branches.
In the converse case where a well-tested branch becomes more
heavily used in operation, the scale factor can be less than unity.
For example, if Q had branch execution rates of 0.3 and 0.7 and
Q' had execution rates of 0.0 and 1.0, it can be shown that the
scale factor is 0.81.
Let us now apply this idea of “fair testing” to a more complex
program flow structure. For a program graph with multiple
branches, the execution rates should be apportioned to the length
of code “dominated” by that branch, i.e. include sub-branches that
can only be executed from that branch. This illustrated in the
figure 4 below.

10 lines

10 lines

90 lines

20 lines

30 lines

14/17×11/12×1/10 14/17×11/12×9/10
10 lines

14/17×11/1214/17×1/12

14/173/17
A

B

C

Figure 4. Fair test profile example

Node A dominates 30 lines of code in the lefthand branch and 140
lines in the righthand branch, so the execution rate is split in the
ratio 30:140, i.e. 3/17 to the left and 14/17 to the right. At node B,
the ratios of code dominated are 10:110 so the input execution
rate of 14/17 is further split (1/12 to the left, 11/12 to the right).
Finally at node C, the ratio is 10:90, the execution rate at node C
is further split (1/10 to the left, 9/10 to the right).
Let us now compute the scale up factors for some different
execution profiles, namely:

• Shortest path — all the executions flow down A.left

• Longest path — all the executions flow down A.right,
B.right, C.right

• Even—execution rate split evenly at each node
The execution rates of the test profile and new profiles are shown
in the table below.

Table 5. Fair test profile and alternative profiles

q(j) q' (j) Code segment
(j) fair shortest longest even

A.left 0.176471 1 0 0.5
A.right 0.823529 0 1 0.5
B.left 0.068627 0 0 0.25
B.right 0.754902 0 1 0.25
C.left 0.07549 0 0 0.125
C.right 0.679412 0 1 0.125

The scale factors computed for the new execution profiles are
shown below.

Table 6. Scale factors for alternative profiles

q' (j)/q(j)*L(j) Segment (j)
shortest longest even

A.left 170 0 85.00
A.right 0 24.29 12.14
B.left 0 0 36.43
B.right 0 13.25 3.31
C.left 0 0 16.56
C.right 0 132.47 16.56
Sum 170 170 170
S (Sum/L) 1 1 1

This demonstrates that fair testing is theoretically possible for an
arbitrary branch structure, but unfortunately, it is unlikely to be
possible for programs in general. Equation (9) does not explicitly
address cases where the segment is in a subroutine or a loop. In
addition, fair apportionment may be prevented because the branch
decisions may not be independent. These issues are discussed
below.

3.2.1 Impact of loops
Increasing the number of loop iterations in the Q' profile will
increase q'(j) in all segments within the loop, and hence increase

the failure intensity, so the scale factor cannot be unity. “Fair
testing” is only feasible if all program loops have a fixed number
of iterations, so that q(j) and q'(j) loop segments are scaled by the
same factor and unit scale factor can be preserved under a
different profile. On the other hand, it may be possible to define a
“nearly fair” test profile where loops are executed the maximum
number of times. In this case, the scale factor for a a different
profile could be less than unity.'

3.2.2 Impact of subroutines
In the case of calls to a subroutine, substituting the length of the
subroutine Lsub into the flow graph branch is not appropriate as the
mean failure probability bound for the subroutine is associated
with the total execution rate of the subroutine over all calls. The
bound for all calls is:

eΤ
N

L
Lsub

sub < θ

If a particular program segment calls a subroutine at a rate qcall,
under the scaling assumption the mean bound on the failure
probability for that call statement in the segment is:

eΤ
N

L
L

q
qT sub

sub

call
call <)(θ

where qsub is the total number of executions of the subroutine per
program test. Hence the failure probability per test of the
subroutine has to be apportioned between the call statements, i.e.
the length substituted into the flow graph is:

Lsub qcall/qsub
But as qsub = Σqcall over all segments that call the subroutine, a fair
apportionment of execution rates is difficult. Any change in qcall
in one segment will affect qsub and hence “unbalance” the
apportionments in all other segments that call the routine. One
possible approximation for including the effect of subroutines
when calculating a balanced profile is to use Lsub/ncall for the
length at each call, where ncall is the number of different calls to
the subroutine that exist in the source code. This allows the rates
to be apportioned independently and will be reasonably accurate
if all qcall rates are similar.

3.2.3 Dependency between decision nodes
Even if some algorithm can be devised that can compute a
balanced execution profile for a complete program, it is unlikely
that a test profile can be constructed that can achieve it, because
there are dependencies between decision nodes. Take the
following C code example:
if (a > 10) action1a() else action1b();
if (a > 20) action2a() else action2b();

The dominated branches from (a > 10) are action1a() and
action1b(). Selecting values of a to ensure the first decision node
is balanced may make it difficult to ensure the dominated
branches of next decision node are balanced. If for example, a
balanced profile for the first decision node requires (a > 10) to be
true 50% of the time and (a > 20) to be true 90% of the time, we
have a contradiction as (a >10) is always true when (a > 20).
The same problem can exist when there are dependencies between
subroutines.

3.3 Incorporating additional test data
While it may be infeasible to devise a balanced profile by testing
the whole program, unit and module test can improve the
coverage of infrequently used code segments and hence improve
the “fairness” of the execution profile. Assuming that segment j
has been executed x(j) times in module testing and q(j)⋅T times in
program testing under profile Q, it can be shown that the scale
factor under a new profile Q' is:

Tjxjq
jq

L
jLxQQS

/)()(
)()(),,(

+
′

⋅=′ ∑ (10)

It can be seen that equation (10) is a simple extension of equation
(8) that includes an extra term for module test coverage. It can be
seen that extra tests always reduce the reliability bound, but the
maximum improvement is achieved where q(j) is small.

3.4 Estimating the maximum scale factor
relative to a test profile

The previous analysis indicates that it is theoretically possible to
design “fair” test profiles where the worst case failure probability
is insensitive to changes in the profile in subsequent operation.
However this only applies to very artificial program structures,
and it is unlikely that a perfectly balanced profile can be achieved.
The situation could be improved if individual subroutines are
tested independently at the module test stage. These results could
be incorporated into the integrated test profile using equation (10)
to make it more “fair”. But even with such improvements, it may
be impractical to achieve a fair test profile as we still have to
allow for subroutines and loops, so it would be useful if we could
derive the worst-case scale-up for an arbitrary test profile. We
have shown in equation (8) that the scale-up of reliability bound
when using an operational profile Q′ rather than a test profile Q
is:

)(
)()(),(

jq
jq

L
jLQQS

′
⋅=′ ∑

We know that, for each code segment, there is some maximum
execution rate, q(j)max. For non-looping unconditional code
segments, the code segment can only be executed once per
program test, so q(j)max is unity. For code in loops or subroutines,
q(j)max will be the maximum loop count or call count. There are
also cases where the maximum rate is much less than unity, e.g.
defensive code (q(j)max = 0) and initialisation code (q(j)max = 1/T).
So to determine the maximum scale-up factor we need to identify
a worst-case execution rate profile Qmax that maximises S. The
worst-case profile would actually be a single path (K) through the
program tree such that:

S(Qmax,Q) = ∑ (q(k) max L(k) / q(k)) / L
is maximised, i.e. where k represents all segments in path K, and
q(k)max is the maximum possible execution rate of the segment.
This could be a hard problem to solve in general. An exact
solution requires an in-depth analysis of the program structure to
find all possible paths, and we should only identify paths that are
feasible. Take, for example, the following C code fragment:

1. if (val > HILIM)
2. {val = HILIM};
3. if (val < LOLIM)
4. {val = LOLIM};
It is clear that val cannot satisfy both conditions (i.e. it cannot be
high and low at the same time), so a worst case path K that
executes segments 2 and 4 is not feasible.
Since it is difficult to determine which segments k are included in
the worst-case path, we can set a conservative upper bound by
summing over all program segments, i.e.:

S(Q′,Q) < ∑ (q(j) max L(j) / q(j)) / L (11)
where j is any segment in the program. This bound should apply
regardless of the profile Q′ used in subsequent operation.

3.5 Handling non-executed code segments
If a code segment i is never executed in T tests, the observed
execution q(i) rate is zero. Clearly any q(i) of zero would result in
an infinite scale factor using equation 8 then q′(i) is non-zero.
Ideally, this should never occur as all executable segments should
be covered (e.g. by including extra module tests using equation
10). However, there is an alternative way of handling non-
executed segments. We can split the segments into two classes
indexed by c (covered segment) and u (uncovered segment). A
fault in an uncovered segment could have a maximum failure
probability of unity when the segment is executed. However a
failure can only occur if a fault is present and the segment is
executed, hence the maximum expected failure intensity after T
tests is:

L
uquLNTu

)()()(
′

≤′θ

while for covered segments, the bound on the expected failure
intensity is:

)(
)()()(

cqL
cqcL

eT
NTc ⋅

′
⋅≤′θ

It follows that for an uncovered segment, the equivalent execution
rate that should be used in equation 8 to derive the scale factor is:

eT
uq 1)(= (12)

4. EXPERIMENTAL EVALUATION OF
THE SCALING THEORY

The theory presented in the previous sections suggests that
programs tested with a “fair” profile should be less sensitive to
profile changes than programs tested with an “unfair” profile. We
have also given a method for bounding the worst-case change in
the failure rate for any new profile given knowledge of the
execution profile under test.
To assess whether this occurs in practice, and also to check the
conservatism of the bounding formula, we derived the scale-up
factors for a range of distributions and compared them with the
scaled worst-case bounds predicted by equation (7) for two
different programs.

4.1 Application to the PODS TRIPV program
The scale-up evaluation used the TRIPV program used in the
PODS experiment [1]. This program computes a reactor power
value from a number of analogue inputs and then performs a
reactor trip decision calculation The original Fortran TRIPV
program was converted to C to facilitate testing on a modern
computer. The program was then instrumented to measure
segment coverage and was tested over 10 000 program cycles
with the following sets of random input data:

• uniform random (where all analogue input values have equal
probability)

• normal (where the input values are taken from a normal
distribution so the central values are most probable)

• inverse normal (a “bath-tub” distribution where the outer
edge values are the most probable)

The segment execution rate profiles for the program under
different input profiles are shown in figure 5 below. To aid
comparison, the segments denote by j on the x axis are ordered by
decreasing execution rate (for the case where the input data is
uniform random data as depicted by the solid line in figure 5).
Note that only the least executed segments are displayed in the
figure. The highest execution rate segments tend to have very
similar values (e.g. fixed loops and code on the main program
path are always executed and hence the rate per program
execution is constant regardless of the input profile).

Segment
executions
per test
 q(j)

0.0001

0.001

0.1

1

10
Inv. normal
Uniform
Normal

0.01

Segment j

Figure 5. Segment execution rates /cycle for different input
distributions (averaged over 10 000 program cycles)

As we can see from figure 5, the inverse normal input profile
tends to produce the highest execution rates for most segments
while the normal input distribution has a larger proportion of low
(and zero) execution rates. This is not too surprising—most of the
boundary conditions occur near the edge of the input range, so
boundary checking code segments are activated more often with
the inverse normal distribution. Conversely the normal
distributions tend to select central values, so boundary values are
selected less frequently.
Some segments are not executed at all. In most of these cases,
segment execution is impossible (i.e. they are defensive checks
against infeasible values) but in the case of the normal
distribution, 6 feasible code segments are never executed (out of
140 feasible segments). For these non-executed segments we used
equation (12) to derive an equivalent execution rate of 0.00037
per test (i.e. 1/eT, where T=10 000).

4.1.1 Sensitivity to changes in input profile
Figure 5 suggests that the inverse normal input distribution is the
“fairest” as it tends to have a higher execution rate for most
segments. However there are exceptions where the rates can be
dramatically lower than the rate under a random distribution, and
as we have noted earlier, it is the least executed segments that
have the dominant effect.
To assess which distribution is the fairest (i.e. least sensitive to
changes in profile), we computed the scale-up factors for pairs of
input distributions used in the TRIPV coverage experiment (one
as the initial test profile, the other as the operational profile).
Equation (8) was used to compute the scale-up factors, and the
results are shown in the table below.

Table 7. Scale factors for different combinations of test and
operational profiles (PODS)

Test profile Operational profile
 uniform inverse normal normal
uniform 1.00 1.21 0.90
inverse normal 3.20 1.00 6.17
normal 114.86 345.97 1.00

It can be seen that tests with uniform random data are the least
sensitive to change. Perhaps surprisingly there is a scale-up factor
of less than unity when normal data is used as the operational
profile. This “scale-down” effect can occur with an “unfair”
profile used in operation, because the average program path can
be shorter than the average under the test profile (and hence, on
average, encounters fewer faults).
It can be seen that the normal input distribution is the most
sensitive to change. This is to be expected as exception conditions
at extreme input values are relatively poorly tested (and in some
cases not at all). We can also see that the greatest scale-up occurs
when we test with normal data but have an operational profile that
is inverse normal. In this case, the scale-up factor can be between
one and two orders of magnitude.

4.1.2 Maximum scale-up prediction
Equation (11) gives the maximum scale-up relative to a specific
test profile. The program was analysed to determine the maximum
possible execution rate for each segment, q(j)max, to account for
the execution of loops and multiple calls to subroutines. This was
comparatively easy to derive as the program has a simple
structure with fixed loops and a fixed number of calls to
subroutines. We also had to set q(i)max to zero for non-executable
defensive code, and also set q(j)max = 0.0001 for initialisation code
(since it is executed once in 10 000 tests). In the following table,
the worst case scale factor predictions for different test profiles
are compared with the observed scale-up factors achieved with
different operational profiles.

Table 8. Actual scale factors vs. predicted maxima

Test profile Scale-up factor
 Max actual

scale-factor
Max predicted

scale factor
uniform 1.21 6.6
inverse normal 6.17 10.0
normal 345.97 1059.3

We do not know if there are other operational profiles that result
in greater scale factors and there is some conservatism in the
maximum scale factor prediction. Nevertheless, the actual scale
factors are less than the predicted maxima and the general shape
of the prediction mirrors the empirically observed scale-up.
While the uniform random input distribution has the smallest
scale-up bound, this distribution is not necessarily the optimum
test pattern for a program. Achieving a fair distribution over the
code segments requires knowledge of the decision points within
each input range and it is likely that each input variable will need
a different distribution to maximise fairness. To assess whether
the uniform random profile was the “fairest”, we performed
further segment coverage tests with intermediate distributions,
namely “shallow” versions of the inverse normal and normal
distributions. The table below shows the maximum scale factor
prediction for all distributions.

Table 9. Predicted maximum scale-up: different test profiles

Test profile Maximum scale-up
Inverse normal 10.0
Inverse (shallow) 5.0
Uniform 6.6
Normal (shallow) 745.2
Normal 1059.3

This suggests that (for this program at least) a slight bias towards
the extremes of the input range can improve the overall fairness of
the execution rates over the code segments. This seems intuitively
reasonable as quite a lot of the program logic is associated with
range checks that occur at the extremes of the input range. It is
likely that further tuning of the distributions on individual inputs
could improve fairness even further.
We can compare these scale-up bound predictions against the
mean reliability growth for the 12 known faults in PODS. The
mean failure probability of a program after T tests is modelled by:

)exp()(TT ii λλθ −=∑ (13)

for all faults i in the program, where λi is the probability of failure
per test of fault i. This assumes that the failures of all 12 are
disjoint (the worst case).

The values of λi for all 12 faults in the PODS TRIPV program
were established by performing long term failure rate
measurements under uniform, normal and inverse normal
(“bathtub”) input profiles with a single fault activated for each
measurement. We then computed the mean failure probability of
the set of faults after different numbers of tests T for each profile

using equation (13). This is effectively a virtual reliability growth
experiment that makes use of the known failure rates of the faults.
The growth curves are shown in figure 6 together with the worse
case bound prediction, N/eT, for the failure probability from
equation (4). This bound is independent of the test profile
provided that the profile is not changed.

0.00001

0.0001

0.001

0.01

0.1

1

10 100 1000 10000 100000

Tests (T)

Mean
fails/test

Uniform

Normal
Inverse

Bound (N=12)

Figure 6. Reliability growth (different profiles) vs worst case

bound
It can be seen that, regardless of the test profile chosen, the failure
probability is always below the predicted worst case bound.
 We can also compute the effect of switching to a different profile
after T tests. If at time T, a new profile is used, the mean failure
probability will be:

)exp()(TT ii λλθ −′=′ ∑ (14)

where λ′i is the failure rate (per program test) of the fault under
the new profile.
 In figure 7 below we show the failure rate under the “normal”
test profile and the effect of switching to the “uniform” profile
after T tests for subsequent operation.
The “Test” plot shows the mean reliability growth if the “normal”
input profile is used for testing (equation 13). The “Operation”
plot shows the mean reliability if the profile is switched to the
“uniform random” profile (equation 14) after T tests. Figure 7 also
shows:

• the standard bound (equation 4) under the test profile

• the scaled bound for a switch to the uniform random profile
(from Table 7 and equation 14)

• the maximum scaled bound (Table 8 and equation 11) that
applies to a switch to any other profile.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10 100 1000 10000 100000

Tests

Mean
Fails/test

Operation
(uniform)

Test
(normal)

Scaled bound
(maximum)

Bound

Scaled bound
(uniform op)

Figure 7. Change in reliability: “normal” test profile followed

by “uniform” operational profile
It can be seen that there is a very large increase in failure
probability when the input profile is changed to uniform random,
but the failure rates are within the predicted bounds.
We repeated this virtual reliability growth experiment using
“uniform random” as the test profile, and switching to the
“normal” profile for subsequent operation (see figure 8).

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10 100 1000 10000 100000

Tests

Mean
Fails/test

Operation
(normal)

Test
(uniform)

Scaled
bound
(maximum)

Bound

Scaled
bound

Figure 8. Change in reliability: “uniform” test profile

followed by “normal” operational profile
As before, the original, scaled and maximum bounds are plotted
on the same graph. It can be seen that when the profile is switched
to the “normal” input profile the failure probability actually
decreases. This is reflected in the re-scaled bound for a “normal”
profile which also decreases slightly. As discussed earlier a
reduced scale factor is possible when the well-tested segments are
heavily used in operation. So, as predicted by the theory, the
“fairer” test profile produces a program that is less sensitive to
changes in the operational profile.

In both virtual experiments, the reliability bound equation (4), is
successful in bounding the reliability growth under a fixed profile,
and the scale-up bound equations (8 and 11) successfully bound
the reliability changes when a new operational profile is used.

4.2 Application to PREPRO
The same type of experimental evaluation was applied to the
PREPRO example. This was an offline program from the
European Space Agency that had been used in an earlier
reliability experiment [8]. This program computes the
performance of an antenna array. This antenna array is specified
in a special language which is parsed by the PREPRO program. A
test generator was available that could generate random antenna
descriptions of varying complexity. We instrumented this
program and measured the test coverage under two different
profiles (P1 and P2) produced by a modified random test case
generator that could vary the occurrence rates of different antenna
features.
Using equation (8), the predicted scale-ups for PREPRO were:

Table 9. Scale factors for the PREPRO example

Test
profile

Operational
profile

Predicted scale
factor

P1 P2 1.1
P2 P1 3.8

We could not compute a maximum scale factor as the program
was recursive, so the segment execution rates were unbounded.

We measured the failure rate λi for 28 known faults in PREPRO
under profiles P1 and P2. As in the PODS example, we then
computed the mean failure probability expected when tested
under one profile, and the expected failure probability if there is a
switch to a new profile after time T.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

Tests

Fails/test

Bound (P1)
Scaled bound (P2)P2 (operation)

P1 (test)

Figure 9. PREPRO evaluation: (P1 test, P2 operation)

In figure 9, we show the reliability growth when the program is
tested under the “fairer” profile P1 and the impact of changing to
profile P2. We also show the predicted reliability bounds under

the test profile P1 and the scaled bound under the operational
profile P2.
It can be seen that the failure rate under P2 is less than under the
original profile (an effect also observed in PODS). This is
consistent with the relatively small scale-up factor of 1.1
predicted by the scale-up theory.
For the converse case where the “unfair” profile P2 is used for
testing and P1 is used in operation the predicted scale factor
S(P1,P2) is 3.8 so we would expect a significant increase in
observed failure probability when profile P2 is used in place of
P1. Figure 10 shows the results of using P2 for testing then
switching to profile P2.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

Tests T

Fails/test

Bound
Scaled boundP1 (operation)

P2 (test)

Figure 10. PREPRO evaluation: (P2 test, P1 operation)

So both the PODS the PREPRO results are consistent with the
reliability bound scaling theory.

5. APPLICABILITY OF RESULTS
This paper has extended the reliability bound theory developed in
[2]. In the extended theory:

• The reliability bound prediction in [2] can be re-scaled for a
different operational profile provided the program segment
execution rates can be measured under both profiles.

• The scaling theory can include module test information as
well as tests applied to the entire program.

• If it is possible to set an upper bound on the execution rates
of all program segments, it is possible to compute a scaled-
up reliability bound that would apply to whatever
operational profile is chosen.

• For some program structures it is possible to identify a
totally “fair” test profile where there is no change in the
reliability bound whatever operational profile is used. But in
practice it is unlikely that perfectly fair test profiles can be
achieved for realistic programs.

The experimental evaluation appears to be consistent with the
predictions of the theory, but the theory needs to be tested on a
range on different software examples. In addition the assumptions

necessary to develop the re-scaling theory could be viewed as
extreme and unlikely to be applicable in practice. It will be
necessary to check the impact of violations of the underlying
assumptions. Some of the effects of assumption violations are
discussed below:

• Assumption (1) states that faults are localised to basic block.
This assumption makes it easy to re-scale the failure
intensity of a faulty block for a new profile. In practice,
failures due to a single fault can be spread over many blocks,
e.g. due to incorrectly initialised data. This may not have a
major effect on the scaling prediction as the scale factor is
actually a weighted average over all blocks. A hypothetical
fault that causes failures in all blocks should have a scale
factor equal to the mean scale factor. By comparison, scaling
for localised faults can depart from the average (although the
scaling factors averaged over all faults should be close to the
predicted mean value). On this basis, we would expect less
variation in scale factors for non-localised faults. So
violations of assumption (1) do not necessarily invalidate the
results.

• Assumption (2) that the probability of failure per test is
proportional to segment execution rate is questionable. If the
segment is executed several times per test, the scaling could
result in a failure probability greater than unity. However in
these cases, the predicted scale-up is greater than the actual
scale-up so the scale bound is conservative.

• Assumption (3) that faults are equally likely in all lines of
code is also debatable. It is known that fault density can
increase in complex code modules. However this may not
matter; the scale factor is an average over the entire program
flow graph. Uneven distribution of the faults will only have
an effect if the fault density is correlated with the scale-up
factors for individual segments.

We should also note that the computed scale factor is a mean not
a maximum. There is a finite probability that all N faults are
located in the segment with the worst scale-up factor. However,
the probability that all faults are located in the highest scale-up
segment decreases rapidly as N increases. This effect would also
be less severe if the faults were non-localised.
The limited analysis above suggests that assumption violations
may not have a major effect (or are conservative), but further
analysis is needed.
Current software engineering practice favours the use of a
realistic operational profile [6] for testing the integrated system. If
this profile is correctly defined then the reliability achieved in the
field should match that observed in development. However our
theory indicates that if the expected operational profile is “unfair”
then the field reliability could be extremely sensitive to changes
in the operational profile (in the PODS TRIPV evaluation,
changes of several orders of magnitude were predicted and
observed). A radical alternative to realistic testing would be the
use of “fair testing” as this would result in profile-independent
reliability bounds. However there are considerable technical
barriers to the identification, feasibility and implementation of
perfectly fair test profiles and the theory is based on assumptions
that have not been evaluated on realistic programs. So it would be
undesirable to abandon realistic testing in favour of “nearly fair”
random testing.

However the theory could help to reduce sensitivity to changes in
the profile during operation. Possible strategies are listed below.

• Design tests that execute the least used program segments (to
fill “holes” in the segment execution profile). The theory
indicates that it is the least used paths that pose the greatest
risk when the profile changes. Additional testing of the least
used and unused code segments should reduce sensitivity to
changes in operational profile.

• Include module test results using equation (10) when
estimating the reliability bound. Module tests can be used to
achieve a fairer execution coverage.

• Estimate the sensitivity of the test profile by using maximum
scale-up formula (equation 11). The sensitivity of the bound
could then be assessed as part of the software acceptance
process.

• Monitor the execution profile during operation. If the
operational and test execution profiles are known, the worst
case reliability bound can be adjusted to accommodate the
difference using equation (7).

The theory could also be relevant to module testing. To limit
sensitivity to changes in reliability in operation, module tests
should be as fair as possible and, from equation (10), the number
of segment executions should be increased beyond that needed to
achieve full coverage.

6. SUMMARY AND CONCLUSIONS
The reliability bound theory developed in [2] has been extended
to include changes in operational profile. The theory can predict
the change in the reliability bound for a specific operational
profile and for a worst case profile. Perhaps the most surprising
aspect of the theory is that, in principle, there can be “fair” test
profiles that produce programs that are insensitive to changes in
the operational profile. An experiment assessment of achieved
reliability using different test and operational profiles appears to
be consistent with this theory.
Given the novelty of the theory, the assumptions and practical
testing constraints, we do not think fair testing can replace tests
using a realistic profile. However, the results of the theory can be
used to assess and potentially reduce the sensitivity of the
delivered program to unexpected changes in the operational
profile.
To develop the theory it was necessary to make a number of
additional assumptions about the behaviour of faults that are
debatable. However a limited analysis of the assumptions suggest
that the results of the theory seem to be relatively robust to
assumptions violations.

Further work is needed to evaluate the theory on different
software examples and to assess the impact of departures from the
theory assumptions. It would also be useful to explore the
feasibility of deriving and implementing “fair” test profiles for
realistic programs.

7. ACKNOWLEDGMENTS
This research was undertaken for the UK Nuclear Industry C&I
Research Programme under Scottish Nuclear (now British Energy
Generation UK) contract PP/114163/HN. The paper reporting the
research was produced under the EPSRC research
interdisciplinary programme on dependability (DIRC). I also wish
to thank Prof. Bev Littlewood, Prof. Lorenzo Strigini and Dr.
Mourad Oussalah at the Centre for Software Reliability for their
constructive comments.

8. REFERENCES
[1] P.G. Bishop et al, “PODS a Project on Diverse Software”,

IEEE Trans. Software Engineering, Vol. SE-12, No. 9,
929-940, pp. 929–940, 1986

[2] P.G. Bishop, R.E. Bloomfield, “A Conservative Theory
for Long-Term Reliability Growth Prediction”, IEEE
Trans. Reliability, vol. 45, no. 4, pp 550-560, Dec. 1996

[3] R.E. Bloomfield, A.S.L. Guerra, “Process Modelling to
Support Dependability Arguments”, DSN 2002
Washington, DC, 23-26 June, 2002

[4] J.R. Gaffney, “Estimating the Number of Faults in Code”,
IEEE Trans. Software Engineering, vol. SE-10, no. 4,
1984

[5] M. Kaaniche, K. Kanoun, M. Cukier and M. Bastos
Martini, “Software Reliability Analysis of Three
Successive Generation of a Switching System”, LAAS
Report no 94.030, 1994.

[6] J.D. Musa, "Operational profile in software reliability
engineering", IEEE Software 10(2) pp.:14-42, 1993

[7] Y.K. Malaiya and J. Denton, “Estimating the Number of
Residual Defects”, HASE'98, 3rd IEEE Int'l High-
Assurance Systems Engineering Symposium, Maryland,
USA, November 13-14, 1998

[8] A Pasquini, A N Crespo and P Matrella, “Sensitivity of
reliability growth models to operational profile errors”,
IEEE Trans. Reliability, vol. 45, no. 4, pp 531–540, Dec.
1996

[9] K. Yasuda, “Software Quality Assurance Activities in
Japan”, Japanese Perspectives in Software Engineering,
187-205, Addison-Wesley, 1989

