What is wrong about your safety case?

Peter Froome
pkdf@adelard.com
The talk covers

- A review of 8 safety cases
- Guidance developed to address the review recommendations
- Following the theme of today’s seminar, I will concentrate on findings and guidance relating to complex safety arguments
A safety case is ...

A documented body of evidence that provides a convincing and valid argument that a system is adequately safe for a given application in a given environment, and that safety will be sustained through life.

- To be convincing it must “tell a (true) story”
Review aims

To examine a selection of safety cases

- To identify common areas of weakness and opportunities for improvement
- Identify best practice
- Assess the clarity and robustness of safety arguments
Review criteria

- Adequate safety case
- Application adequately defined
- Environment adequately defined
- "Adequately safe" defined and justified
- Safety managed into service and through life
- Reviewable by stakeholders
- Adequate arguments
- Adequate evidence
- Adequate requirements capture and validation
- Safety Requirements defined and adequate
- Adequate safety analysis
- Functional safety
- Health and Safety
- Documentation quality
- Adequate rigour
- Trusted evidence
Eight safety cases

- Safety cases procured along with system
- Safety case procured separately
- Retrospective safety appraisals

- Range of systems from fighting platforms to infrastructure
- Varying amounts of documentation and detail
Results

- We found shortcomings in a number of areas ...
Safety argument approach

Safety arguments should be explicit & appropriate to the system and the analysis performed

• Typically approach for "physical safety" may be different from approach to functional safety
 • However this was not seen
 (although sometimes distinction is not clear-cut, and depends on boundaries of safety case)
 • Sometimes functional safety only relevant in wartime but all cases excluded combat or warfare situations
We deduced that all are based broadly on same argument:

- All hazards are identified
- All hazards sufficiently mitigated
- Therefore system is ALARP and hence tolerably safe

This style may be appropriate: but not for all systems
Hazard identification completeness

- Hazard identification is known to be difficult and is rarely complete
- Significant problem when the safety case argument is based on hazard identification and mitigation
- No justification for completeness of hazard identification is generally provided
- Can validate completeness e.g. by review of similar systems
Other safety case problems

- Accidents and hazards not well distinguished
- Abstraction of hazards (top-level vs. failure modes) incorrect
- Overall risk class judgement wrong or missing
- Too many class “C” risks
- Hazard controls applied to accidents
- Not enough mitigation of hazards rather than accidents
- Problem of organisation and management of long lists of hazards
- Poor ALARP justification
- Inconsistent safety criteria
- Risk apportionment
- Use of in-service data
Guidance

- We produced guidance covering these issues
- Will concentrate on safety argument guidance today ...
Safety case “story”

To tell the (true) story we need to:

- Make an explicit set of claims about the system
- Produce the supporting evidence
- Provide a set of safety arguments that link the claims to the evidence
- Make clear the assumptions and prerequisites underlying the arguments
- Allow different viewpoints and levels of detail
Last point is key. Viewpoints include:

- Safety specialists involved with detail
- Internal and external regulators
- Operators and managers
- Senior staff who accept system as safe to enter service
 - they don’t have time to master fine detail!
- And if things go wrong ... lawyers
Explicit safety arguments

Advantages of explicit safety arguments:
- The safety case is easier to review
- The safety case should be more convincing
- Nugatory safety work that does not contribute to the safety argument is less likely to be carried out
- Easier to identify & address potential weaknesses in the argument at an early stage
- Easier to make the safety case a living document

Reduces project risk!
Process for building safety case

- Choose a safety argument notation
- Show the structure of the argument using the chosen notation
- Justify that satisfying the subclaims also satisfies the parent claim
- Organise the safety evidence to support the claims and subclaims chosen
- Relate the claims and subclaims to the safety requirements and hazard log
Reasoning notation

- Several choices e.g. GSN, Claims-Arguments-Evidence
- Organises the body of evidence supporting the overall safety judgement of the system in a coherent way
- Advantages over purely textual safety cases, which can be cumbersome and difficult to construct and review

The examples in this talk use the "claims-arguments-evidence" notation
Build structure

- Develop structure using the chosen notation
- Typically, minimum is the overall safety claim and two levels of subclaims

The overall safety claim will typically be of the form: "The equipment/system is adequately safe and of adequately low danger to the environment, in the operating context defined by the assumptions and if the prerequisites are met, to provide the defined capability."
The equipment is adequately safe and of adequately low danger to the environment, in the operating context defined by the assumptions and if the prerequisites are met, to provide the defined capability.

Assumptions

Prerequisites

- Safety & environmental requirements correctly captured and validated
- Equipment meets safety & environmental requirements
- Appropriate SEMS and culture of safe working are in place

This is the beginning of the “story”
Example subclaim structure

- Equipment meets safety & environmental requirements
 - Equipment meets occupational safety requirements
 - Design for occupational safety
 - Hardware is functionally safe
 - Software is safe
 - Equipment meets functional safety requirements
 - Human factors are addressed
 - Equipment meets environmental requirements

This is the middle of the “story”
Justify claim structure

- Justify that satisfying the subclaims shows that the parent claim is also satisfied
- Use explicit arguments/strategies

- There are four generic arguments/strategies: conformance to standards; analysis; process; and experience (real and simulated)

- Also separation of concerns (physical vs. functional)
- Separation of components (hardware/software)
Types of claims

- Safety case may contain two types of claims

 - Direct claims: Claims about system behaviour supported by sub-claims that demonstrate safety

 - Meta-claims: Claims that support the basis on which direct claims are made, e.g. that sub-claims are sufficient to support a claim (claims about claims)

- Satisfying the meta-claims helps ensure the safety case is valid
Example meta-claims

Meta-claims for structure might include:

- Specified functionality complete
- Specified safety requirements valid
- Integrity targets valid
- Failure rates are realistic
Risks and robustness

- Consider risks to arguments
 - E.g. if argument is based on hazard mitigation, what if hazard identification is incomplete?

- Consider robustness
 - For high-integrity systems, might want several (compensatory) legs of argument
Organise evidence

- Organise the safety evidence to support the claims and subclaims chosen
- Useful to give summary of evidence and reference to full report
- Useful to use the concept of
 - "direct" evidence (e.g. facts about design, test results, etc.)
 - "indirect" evidence (process, quality standards, competence, etc.)
Example arguments

Equipment meets safety & environmental requirements

Conformance to standards, process

Safety analysis adequate

Analysis

ALARP assessment

This is the end of the “story”
How does the argument structure relate to:

- The Hazard Log (very detailed)
- Contractual safety requirements
- Derived safety requirements

relationships
Safety claims & hazards

Contract

Safety requirement

Claim: electrical standards

Mitigates

Determines claims

Story

Hazard Log

Shock hazard

Shock hazard

Shock hazard
Conclusions

- A number of problems recurred in the safety cases we reviewed
 - Structured approach lacking for safety arguments
 - Inconsistent safety criteria and risk apportionment
 - ALARP and some technical issues badly handled
 - In-service data lacking & little used
- We produced guidance covering these, including
 - Recommendations for argument structure
 - Process for building a well-structured safety case